
NASA/TM–1999-208755

Microphone Array Phased Processing System (MAPPS)
Version 4.0 Manual

Michael E. Watts, Marianne Mosher, Michael Barnes, and Jorge Bardina

March 1999

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA’s counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

The NASA STI Program Office . . . in Profile

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM–1999-208755

Microphone Array Phased Processing System (MAPPS)
Version 4.0 Manual

Michael E. Watts and Marianne Mosher
Ames Research Center, Moffett Field, California

Michael Barnes and Jorge Bardina
Caelum Research Corporation, Ames Research Center, Moffett Field, California

March 1999

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
(301) 621-0390 (703) 487-4650

iii

CONTENTS

SUMMARY... 1

INTRODUCTION .. 1

SYSTEM DESCRIPTION .. 2

Computing Environment.. 3

Data Considerations... 3

Coordinate Systems ... 3

Calibration Methods... 10

Scanning Surface Definition .. 15

Data Acquisition Blocks... 15

Microphone Health Checking .. 16

Added Gains .. 16

Noise Reduction Methods.. 17

Side Lobe Reduction.. 17

Processing Control Interface.. 17

Main Window.. 17

Customize Array Window.. 20

Processing Geometry Window .. 20

Processor Setup Window... 21

Calibration Window... 21

Flow Conditions Window.. 22

Preferences Window.. 22

Processing Software... 22

Parallel Virtual Machine (PVM)... 22

MAPPS Processing Software ..23

Control Program .. 24

Input Program.. 25

Parallel Processing Program .. 26

Output Program ... 28

Included Subroutines ... 28

Running in Batch Mode... 29

iv

Visualization Software.. 30

Main Module ... 30

Overview Module... 30

Imager Module... 31

Individual Microphone Health Module .. 33

Combined Microphone Health Module.. 33

Surf Module... 33

Source Integration Module... 34

FILE FORMATS... 34

File Name Convention.. 34

Raw Time History Data File (ttttttPMArrrrrppprawthvv.nc)... 35

Processed Data File (ttttttPMArrrrrpppprocdvv.nc)... 35

Control Settings File (ttttttPMArrrrrpppcntrlvv)... 36

Test Model Geometry File ... 36

Projected Model File.. 36

Level Integration Files.. 36

Calibration Files Used by the Processing Program.. 37

Calibration Sensitivity File... 37

Instrumentation Calibration File... 37

Intermediate Calibration Files... 38

Intermediate Instrumentation Calibration File... 38

Intermediate Speaker Free-Field Transfer Function File .. 39

Intermediate Speaker Definition File.. 39

Intermediate Speaker Array Transfer Function File.. 40

Intermediate Directivity Calibration Files... 40

UTILITY PROGRAMS... 41

Find Model Projection ... 41

Source Level Integration... 41

Processed NetCDF to Plot 3D Conversion.. 42

Expanded Grid File Generation for FAST ... 42

Model Coordinate Alignment... 43

Calibration Generation Utilities.. 43

v

Speaker Free-Field Definition Transfer Function Generation .. 43

Speaker Array Transfer Function Generation... 43

Intermediate Directivity Calibration File Generation... 44

Daily Sensitivity Generation... 44

Instrumentation Neural Net Curve Fit.. 44

Microphone Diaphragm Curve Fit ... 44

Viewing Microphone Diaphragm Curve Fit... 48

Representative Microphone Curve Fit.. 48

Speaker Model Neural Net Curve Fit... 49

Installation Neural Net Curve Fit.. 51

Directivity Neural Net Curve Fit... 53

REFERENCES.. 54

APPENDIX 1. MAPPS PROCESSING SOFTWARE CONTROL PROGRAM FLOW MAP...... 55

APPENDIX 2. MAPPS INPUT PROGRAM FLOW CHART... 60

APPENDIX 3. MAPPS PARALLEL PROCESSING PROGRAM FLOW CHART. 69

APPENDIX 4. MAPPS OUTPUT PROGRAM FLOW CHART... 78

APPENDIX 5. RAW DATA FORMAT DESCRIPTION ... 80

APPENDIX 6. PROCESSED DATA FORMAT DESCRIPTION.. 84

APPENDIX 7. CONTROL SETTINGS FILE EXAMPLE.. 90

APPENDIX 8. INSTRUMENTATION CALIBRATION FILE DESCRIPTION............................. 94

APPENDIX 9. SPEAKER CALIBRATION FILE DESCRIPTION ... 98

APPENDIX 10. INSTALLATION CALIBRATION FILE DESCRIPTION 100

APPENDIX 11. DIRECTIVITY CALIBRATION FILE DESCRIPTION....................................... 101

FIGURES.. 102

MICROPHONE ARRAY PHASED PROCESSING SYSTEM
(MAPPS) VERSION 4.0 MANUAL

Michael E. Watts, Marianne Mosher, Michael Barnes,* and Jorge Bardina*

Ames Research Center

SUMMARY

A processing system has been developed to meet increasing demands for detailed noise measurement
of individual model components. The Microphone Array Phased Processing System (MAPPS) uses
graphical user interfaces to control all aspects of data processing and visualization. The system uses
networked parallel computers to provide noise maps at selected frequencies in a near real-time testing
environment. The system has been successfully used in the NASA Ames 7- by 10-Foot Wind Tunnel.

INTRODUCTION

Modern aircraft have improved acoustically to the point that the sound generated by model scale aircraft
tested in wind tunnels is at or below the background noise of the wind tunnel for many conditions.
Acoustic test techniques are improving to meet the challenge of distinguishing the sound generated by
the model from the noise of the test environment. In order to investigate future aircraft noise reduction
techniques, the acoustic characteristics of each aircraft model component must be known. No longer is
it sufficient to measure noise with a single microphone in a semi-anechoic environment and determine
only the overall noise change. Current, and future, noise reduction thrusts are to measure and influence
the individually smaller but globally important noise generators such as flap edges and gear struts. We
now need to be able to say how the implementation of a noise reduction technique affects the
component acoustic characteristics as well as the overall sound level.

This requirement for detailed knowledge of acoustic sources and low signal to noise ratio led to the
development and application of microphone array technology to wind tunnel testing. Important factors
contributing to the usability and usefulness of arrays in testing environments today include ease of use
in processing and visualization interfaces, efficient handling of large quantities of data, speed of
obtaining calibrated results, and display of results in an understandable manner. The use of point and
click interfaces provide intuitiveness and ease of use in modern systems. This is a desirable goal as it
reduces training time and thus increases the number of users who use the system. The combination of
large numbers of microphones and the desire to process a large number of frequencies have resulted in

* Caelum Research Corporation, Ames Research Center, Moffett Field, CA 94035-1000.

2

the production of large files for each test point. Thus the network transfer of, and disk access to, data
files becomes an issue when considering the bottlenecks in system throughput. Traditional piston
phone calibration techniques do not take into account installation or directionality effects. Additionally,
the individual calibration of large numbers of microphones is time consuming and tedious. Thus the
calibration of array microphones is an important aspect in designing an array system able to produce
calibrated results in a timely manner. Array systems not only produce large quantities of raw digital
data, but large quantities of processed data. The ability to view and assimilate this data efficiently is
even more important than producing the results. After all, if you acquire the data but it is never used,
then all the time and money spent in development and testing are wasted.

The requirements mentioned above led to the development of the Phased Microphone Array Tech-
nology (PMAT) system. The PMAT comprises two parts: 1) instrumentation and data digitization and
2) data processing and visualization. The Microphone Array Phased Processing System (MAPPS)
comprises the second part of PMAT. This paper will discuss the implementation of these requirements
into the MAPPS.

The paper is organized to describe first the general and then the specific concepts. An overall system
description is presented, followed by general data considerations. Detailed descriptions of the MAPPS
functions and interfaces are then presented. Finally, the general utility programs used by MAPPS are
described.

SYSTEM DESCRIPTION

MAPPS was developed as part of the PMAT system that encompassed signal measurement, analog to
digital conversion, data storage, data processing, and results visualization. The MAPPS begins at the
end of the data acquisition and storage and ends with the processed data visualization. This system is
designed to be versatile and robust in its treatment of variable numbers of microphones, number and
locations of processes, versatile calibrations, and visualization requirements. This versatility is designed
into the system to provide for alternative positions if components fail. These component failures will
result in degraded results but will still be sufficient to provide researchers with information to meet their
needs. Ease of use of the system was also a cornerstone of the design constraints. A point and click
graphical interface to the processing and visualization codes was thus developed. This point and click
environment will allow a minimally trained researcher to operate the system. The system is designed so
that the user may concentrate on research, testing, and data interpretation instead of data and file
manipulation.

An operational design goal for the MAPPS was to provide sufficient results in near real time to allow
the test director and researcher to make next run content decisions. The first operational test of the
MAPPS was in a recent Flap Edge III test using a 100-element microphone array in the NASA Ames
7- by 10-Foot Wind Tunnel. The system had a 9-minute cycle from end of data acquisition to showing
results on screen for 166 frequencies with 400 averages and a frequency resolution of 150 Hz. This
cycle time was sufficient to obtain results from one point for each run condition and to allow the test
director to make model change and run condition decisions for the next run. Another operational

3

design consideration was to have all the data processed and ready for examination by the next day. The
ability to batch process multiple data points was also demonstrated at this test.

There are three main elements of MAPPS: 1) processing control interface, 2) processing software, and
3) visualization software. Each element can be treated as a separate entity that is interrelated and inter-
connected by data files. Figure 1 shows the interrelationship of these elements with process control and
data flow. This section describes the computing environment, general data considerations, and the three
main elements of MAPPS.

Computing Environment

MAPPS programs currently run on Unix-domain systems that support X Windows. Unlike most
operating systems, Unix does not require its users to accept any particular user interface. The
X Window System is a network transparent windowing system that runs on a wide range of computing
and graphics machines.

The execution of multiple tasks in different machines requires user privilege by the system and user on
all machines. In addition, each machine must be a trusted host by the control machine. The ‘xhost’
program can be used to add host names or user names to the list on the control machine to allow
connections to the X server. This provides a rudimentary form of privacy control and security. It is only
sufficient for a workstation (single user) environment, although it does limit the worst abuses.
Environments which require more sophisticated measures should implement other mechanisms.

The X Window System also has a number of severe vulnerabilities. A form of security is provided by
using a secure shell (ssh). The program ‘ssh’ is used to securely access another computer over a
network. It provides strong authentication and secure communications over unsecured channels. It is
intended as a replacement for ‘rlogin’, ‘rsh’, ‘rcp’, and ‘rdist’. It can also replace telnet in many cases.
With ‘ssh’, you can create secure remote X sessions which are transparent to the user. If a remote site
does not support ‘ssh’, a nonsecure fallback mechanism ‘rsh’ is included.

In summary, it is recommended to access all machines of the system through secure channels and
execute the Control program from a trusted host.

Data Considerations

Coordinate Systems
Special consideration was given to the design of the coordinate systems and their implementation to
ensure the greatest flexibility for test setups. There are three coordinate systems used in MAPPS: array,
model, and wind tunnel. MAPPS converts all locations into the wind tunnel coordinate system
internally before processing. Transformation vectors and rotation matrices are included in the raw data
file to convert from model and array to the wind tunnel coordinate system. The convention for the
definition of the transformation matrix is for conversion from the local to the wind tunnel coordinate

4

system. All coordinate systems are right-handed, Cartesian coordinate systems expressed in inches.
The coordinate systems are shown in figure 2.

Wind Tunnel Coordinate System: The Wind Tunnel Coordinate Systemx y zwt wt wt, ,() must have
the x-axis aligned with the flow. The origin can be placed anywhere in the wind tunnel with the x-axis
pointing downstream or upstream. The x-axis direction is indicated by the variable mtunxdir contained
in the raw data file. Mtunxdir has a value of ‘1’ for the x-axis pointing downstream and ‘-1’ for the
x-axis pointing upstream. The wind tunnel coordinate system must be defined before the beginning of
a test and stays fixed for the duration of that test since it is the reference for all other coordinate
systems used during that test.

Array Coordinate System: The Array Coordinate System x y za a a, ,() is tied to the array and moves

with the array. The simplest way to organize the array coordinate system is to make the center of the
array the center of the coordinate system. The z-axis is pointed directly out of the array into the
measurement area and perpendicular to a planar array. When the array is viewed from the front, the
x-axis points to the right and the y-axis points up. This simplifies the positioning of the microphones
and the display of the microphone locations in the processing control interface.

A spherical coordinate system ra a a, ,θ φ() is also used for calibration of the array. The transformation

to the spherical coordinate system is given by equation (1)

r x y z

z

r
y x

a a a a

a
a

a

a a a

= + +

=






= ()

−

2 2 2

1θ

φ

cos

atan2 ,

(1)

The transformation back to Cartesian coordinates is given by equation (2)

x r

y r

z r

a a a a

a a a a

a a a

= ⋅ () ⋅ ()
= ⋅ () ⋅ ()
= ⋅ ()

sin cos

sin sin

cos

θ φ
θ φ
θ

(2)

Model Coordinate System: The Model Coordinate Systemx y zm m m, ,() is tied to the model and
moves with the model. If the ‘mview’ program will be used to view the results of array processing, the
model coordinate system must be oriented so that the z-axis is perpendicular or nearly perpendicular to
the scan surface. Like the array coordinate system, the transformations of the model coordinate system
to the wind tunnel coordinate system must be defined before the start of the test. If the model will be
rotated, the transformations will be easiest to organize if the center of the model coordinate system lies
on the model rotation axis and a coordinate axis is aligned with the model rotation axis.

When a source is used to calibrate the array, the calibration source coordinate system can be considered
a model coordinate system. The source calibration coordinate system x y zc c c, ,() is tied to the calibra-
tion source. The simplest way to organize the calibration source coordinate system is to make the center

5

of the source the center of the coordinate system and orient the z-axis directly out of the source into the
measurement area. When the source is viewed from the front, the x-axis points to the right and the y-
axis points up.

A spherical coordinate system rc c c, ,θ φ() is also used for calibration of the source. The transformation
to the spherical coordinate system is given by equation (3)

r x y z

z

r
y x

c c c c

c
c

c

c c c

= + +

=






= ()

−

2 2 2

1θ

φ

cos

atan2 ,

(3)

The transformation back to Cartesian coordinates is given by equation (4)

x r

y r

z r

c c c c

c c c c

c c c

= ⋅ () ⋅ ()
= ⋅ () ⋅ ()
= ⋅ ()

sin cos

sin sin

cos

θ φ
θ φ
θ

(4)

Basic Transformation: In general, a series of several translations and rotations are involved in any
specific transformation between coordinate systems. This sequence of translations and rotations can be
combined into a standard coordinate transformation. The translation vector and transformation matrix
must be determined for each coordinate system to be used in any test.

To transform from a coordinate system other than the wind tunnel coordinate system to the basic wind
tunnel coordinate system, first multiply by the transformation matrix and then add the translation vector

x

y

z

t t t

t t t

t t t

x

y

z

xc

yc

zc















=














⋅






























+














wt o wt

1 2 3

4 5 6

7 8 9

(5)

The translation vector is the vector from the origin of the basic wind tunnel coordinate system to the
origin of the other coordinate system. This vector is measured in the basic wind tunnel coordinate
system in inches. The elements of the rotation matrix are the cosines of the angles between the
coordinate axis vectors in the two coordinate systems. For simple rotations about one coordinate axis,
the elements of the rotation matrix can easily be determined. For more complicated rotations, the matrix
can be determined by a sequence of simpler rotations. For all cases the elements are defined as follows:

6

t x x
x x

x x

t y x
y x

y x

t z x
z x

z x

t x y
x y

o wt
o wt

o wt

o wt
o wt

o wt

o wt
o wt

o wt

o wt
o

1

2

3

4

= ∠()() = ⋅
⋅

= ∠()() = ⋅
⋅

= ∠()() = ⋅
⋅

= ∠()() = ⋅

cos ,

cos ,

cos ,

cos ,

r r
r r

r r

r r
r r

r r

r r
r r

r r

r r
r r

wtwt

o wt

o wt
o wt

o wt

o wt
o wt

o wt

o wt
o wt

o wt

o wt

x y

t y y
y y

y y

t z y
z y

z y

t x z
x z

x z

t y z

r r

r r
r r

r r

r r
r r

r r

r r
r r

r r

r r

⋅

= ∠()() = ⋅
⋅

= ∠()() = ⋅
⋅

= ∠()() = ⋅
⋅

= ∠()

5

6

7

8

cos ,

cos ,

cos ,

cos ,(() = ⋅
⋅

= ∠()() = ⋅
⋅

r r

r r

r r
r r

r r

y z

y z

t z z
z z

z z

o wt

o wt

o wt
o wt

o wt
9 cos ,

(6)

Where the notation

∠()r r

a b, means the angle between the first axis
r
a and the second axis

r
b .

To transform from the basic wind tunnel coordinate system to any other coordinate system, the
coordinates will first be translated by a vector and then rotated by the transpose of the rotation matrix,

x

y

z

t t t

t t t

t t t

x

y

z

xc

yc

zc















=














⋅














−






























o wt wt

1 4 7

2 5 8

3 6 9

(7)

Test-specific algorithms must be defined before testing and implemented in the acquisition software
such that the correct translations and rotations from other coordinate systems to the wind tunnel
coordinate system are saved in the raw data file.

Equations (5) and (7) are implemented in the processing as two subroutines, o2wt and wt2o. With
these two subroutines and the transformation vector and matrix, coordinates can be transformed back
and forth between coordinate systems.

Array Coordinate System Transformations: While the wind tunnel coordinate system must remain
fixed during a test, the array and its attached coordinate system may be moved during a test. The
processing software takes account of translations and/or rotations of the array without any change to
the processing software as long as the data file includes the correct transformation information. All
transformation distances are stored in inches as the units. If the array moves, there are now three
distinct coordinate systems relating to the array, the wind tunnel coordinate system, the reference array

7

coordinate system and the absolute array coordinate system. The data file contains locations for storing
information about all three coordinate systems and the transformations between them.

The transformations between the wind tunnel and absolute array coordinate systems are:

x

y

z

ta ta ta

ta ta ta

ta ta ta

x

y

z

xac

yac

zac















=














⋅






























+














wt a wt

1 2 3

4 5 6

7 8 9

(8)

and

x

y

z

ta ta ta

ta ta ta

ta ta ta

x

y

z

xac

yac

zac















=














⋅














−






























a wt wt

1 4 7

2 5 8

3 6 9

(9)

If the array moves between data points, the vector and/or rotation matrix will also change. The vector
(center of the array coordinate system measured in the wind tunnel coordinate system) is stored in the
data file in the attribute arrayabsxyzwtc. This attribute is stored in inches as:

arrayabsxyzwtc = xac yac zac wt, ,() (10)

The rotation matrix is stored in the raw data file in the attribute arrayabsrotwtc as a vector.

arrayabsrotwtc = ta ta ta ta ta ta ta ta ta wt1 2 3 4 5 6 7 8 9, , , , , , , ,() (11)

Storing rotation matrices as linear vectors instead of two-dimensional arrays simplifies tracking the
variables and writing programs in multiple computer languages with different array conventions. In
order for the processing program to work correctly, these attributes defining the transformations
between the wind tunnel and absolute array coordinate systems must be correctly stored in the data file.

For a movable array, one location must be selected as the reference for a given test. The transformations
between the wind tunnel coordinate system and the reference array coordinate system are given by:

x

y

z

tar tar tar

tar tar tar

tar tar tar

x

y

z

xarc

yarc

zarc















=














⋅






























+














wt a,r wt

1 2 3

4 5 6

7 8 9

(12)

and

8

x

y

z

tar tar tar

tar tar tar

tar tar tar

x

y

z

xarc

yarc

zarc















=














⋅














−






























a,r wt wt

1 4 7

2 5 8

3 6 9

(13)

The vector to the center of the reference array coordinate system measured in the wind tunnel
coordinate system is stored in the data file in the attribute arrayrefxyzwtc.

arrayrefxyzwtc = xarc yarc zarc wt, ,() (14)

Equation (12) is implemented in the subroutine o2wt. Equation (13) is implemented in the subroutine
wt2o. The rotation matrix is stored in the data file in the attribute arrayrefrotwtc as a vector.

arrayrefrotwtc = tar tar tar tar tar tar tar tar tar wt1 2 3 4 5 6 7 8 9, , , , , , , ,() (15)

If the array never moves during a test, this transformation is the same as the one for the absolute array
coordinate system.

The following example of an array on a traverse shows how to implement the array coordinate system
and how to determine all of the related inputs to the processing program. Let the wind tunnel coordinate
system be defined with the x-axis pointing downstream and the origin at the floor level of the wind
tunnel in the center. The wind tunnel z-axis points toward the ceiling and the y-axis points to a side wall
to form a right handed coordinate system. Suppose the array is mounted on a traverse with the center of
the array 6 feet above the wind tunnel floor and 10 feet to the side of the center of the tunnel, the array
is aimed 30° up from a vertical setting and the traverse allows the center of the array to range from 5
feet in front of the center to 25 feet behind the center of the wind tunnel. Let the array coordinate
system be defined with the center at the center of the array, the z-axis pointing out into the wind tunnel,
the x-axis pointing downstream, and the y-axis making a right handed coordinate system. Figure 3
shows this configuration with the array reference location at the farthest forward location of the array
and the array positioned at 7 feet behind the center of the wind tunnel. In this example, the array
transformations are given by the following values:

mtunxdir 1

arrayabsxyzwtc =

arrayabsrotwtc =

arrayrefxyzwtc =

arrayrefrotwtc =

=
()

−()
−()

−()

84 120 72

1 0 0 0 0 5 0 866 0 0 866 0 5

60 120 72

1 0 0 0 0 5 0 866 0 0 866 0 5

, ,

, , , , . , . , , . , .

, ,

, , , , . , . , , . , .

wt

wt

wt

wt

(16)

Model Coordinate System Transformations: Like the array, it is possible for the model to move
during a test. The three coordinate systems relating to the model are the wind tunnel coordinate system,
the reference model coordinate system, and the absolute model coordinate system.

To transform from the absolute model coordinate system to the wind tunnel system, use the subroutine
o2wt with equation (17)

9

x

y

z

tm tm tm

tm tm tm

tm tm tm

x

y

z

xmc

ymc

zmc















=














⋅






























+














wt m wt

1 2 3

4 5 6

7 8 9

(17)

The subroutine wt2o is used to move from the wind tunnel coordinate system to the absolute model
coordinate system with equation (18)

x

y

z

tm tm tm

tm tm tm

tm tm tm

x

y

z

xmc

ymc

zmc















=














⋅














−






























m wt wt

1 4 7

2 5 8

3 6 9

(18)

The vector to the center of the absolute model coordinate system in the wind tunnel coordinate system
is stored in the data file in the variable modelabsxyzwtc:

modelabsxyzwtc = xmc ymc zmc wt, ,() (19)

The rotation matrix is stored in the variable modelabsrotwtc

modelabsrotwtc = tm tm tm tm tm tm tm tm tm wt1 2 3 4 5 6 7 8 9, , , , , , , ,() (20)

If the model will be moved during the test, one location must be selected as the reference location. The
transformations between the wind tunnel coordinate system and the reference model coordinate system
are:

x

y

z

tmr tmr tmr

tmr tmr tmr

tmr tmr tmr

x

y

z

xmrc

ymrc

zmrc wt















=














⋅






























+














wt m,r

1 2 3

4 5 6

7 8 9

(21)

and

x

y

z

tmr tmr tmr

tmr tmr tmr

tmr tmr tmr

x

y

z

xmrc

ymrc

zmrc















=














⋅














−






























m,r wt wt

1 4 7

2 5 8

3 6 9

(22)

The vector to the center of the reference model coordinate system in the wind tunnel coordinate system
is stored in the data file in the variable modelrefxyzwtc:

modelrefxyzwtc = xmrc ymrc zmrc wt, ,() (23)

The rotation matrix is stored in the variable modelrefrotwtc

10

modelrefrotwtc = tmr tmr tmr tmr tmr tmr tmr tmr tmr wt1 2 3 4 5 6 7 8 9, , , , , , , ,() (24)

The following example shows a model that rotates in a wind tunnel. This example demonstrates how to
determine all of the related values stored in the raw data file. Let the wind tunnel coordinate system be
defined with the x-axis pointing downstream. The wind tunnel z-axis points toward the ceiling and the
y-axis points to a side wall to form a right handed coordinate system. The center of the wind tunnel
coordinate system is on the floor at the center of the wind tunnel and the center of the turntable in the
wind tunnel. The model, a semi-span wing 3 feet long, is mounted vertically on the turntable so that
rotating the turntable imparts pitch to the wing. The simplest transformations will occur when the center
of the model coordinate system is on the axis of the turntable so that the center will not translate when
the wing is pitched. The center of the model coordinate system is placed at the edge of the wing on the
pivot line. The model x-axis points toward the back of the wing aligned with the flow when the wing is
at 0° pitch. The model z-axis is pointing toward the top side of the wing and the y-axis is pointing
along the axis of the wing to make a right handed coordinate system. Figure 4 shows the coordinate
systems. In this example, the model transformations are given by the following values:

mtunxdir 1

modelabsxyzwtc =

modelabsrotwtc =

modelrefxyzwtc =

modelrefrotwtc =

=
()

() () − () () −()
()

−()

0 0 36

0 0 0 1 0

0 0 36

1 0 0 0 0 1 0 1 0

, ,

cos , ,sin , sin , ,cos , , ,

, ,

, , , , , , , ,

wt

wt

wt

wt

α α α α (25)

Calibration Methods
Obtaining the most useful information from an array measurement requires accurate calibrations of the
array. For a single free-field microphone, a high quality calibration includes a frequency response
calibration with a reference electrostatic actuator, frequent piston phone calibrations, free-field
correction, directivity correction, and microphone forebody corrections for in-flow measurements. A
complete calibration of an array involves phase and amplitude calibrations, including the installation
mounting effects on the acoustic field. In order to accurately locate noise sources, the in situ phase
response of all microphones in the array must be known; however, the amplitude can be unknown as
long as all microphones have similar sensitivity. Accurate source level measurements require accurate
array amplitude as well as phase calibrations. The standard piston phone procedure is time consuming
for large numbers of microphones and fails to account for the installation or directivity effects on the
acoustic measurements. The mounting of the microphones in an array often changes the frequency and
directional response of the microphones. A procedure to calibrate the array with a known source can
account for these problems. To produce accurate measurements with the array also requires a directivity
calibration to account for transducer directivity and installation effects. These effects become
increasingly significant with higher frequencies. These effects can be measured by using a calibrated
source with the array in many orientations with respect to the source over the expected range of
measurement angles.

The calibration methodology developed at NASA Ames Research Center contains several types of
calibrations. This method will be referred to as the Ames method and consists of:

11

Pre Scan:
Sensitivity
Individual instrumentation amplitude and phase
Installation effects
Free field

Post Scan:
Directivity
Density
Atmospheric attenuation

Many of the types of calibrations contain multiple options. All of the calibrations used in processing
are controlled through one dialog in the control interface. The appropriate files containing calibration
information must be present and identified in the process setup. Various testing and calibration
processing as described in later sections must be performed prior to array processing to define the
calibration files.

Sensitivity: The sensitivity calibration sets the level response of each microphone in the array at one
frequency or one narrow frequency range. The sensitivity value is used to convert the data from voltage
going into the data acquisition system into Pascals used for processing (Pascals/volt). Either a piston
phone calibration or a speaker box calibration may be used to generate these values. To process data
without the sensitivity calibration, the user must provide a sensitivity file where the slopes have been set
to ‘1.0’ for all the channels.

A method to account for drifts in the microphones and electronics on a frequent basis without having to
repeatedly piston phone all channels was developed using a calibrated speaker source in an anechoic
box. By using the speaker box option, the microphone sensitivities can be measured closer in time to
the actual measurements. This speaker method uses the assumptions that the acoustic field produced by
the speaker box at the array can be accurately measured and the acoustic field is repeatable. All of the
microphones in the array must first be calibrated with a piston phone. Then position the speaker box on
the array and acquire a very long and continuous sample of broad band noise through the data
acquisition system. All of the microphones in the array and a reference channel must be recorded
simultaneously. This establishes a baseline measurement that will be used to adjust the periodic
sensitivities.

To calibrate during testing, place the speaker box against the array, then collect a very long and
continuous sample of broad band noise through the data system. The microphones in the array and a
reference channel must be recorded simultaneously. A subset of microphones near the center of the
array, and an appropriate frequency range, is used to adjust the baseline piston phone calibrations. The
frequency range should be wide enough to produce statistically accurate results yet narrow enough so
that the response of the instrumentation varies an insignificant amount over the frequency range. The
number of microphones chosen near the center of the array must be determined to eliminate
microphone variations. The program ‘dailysensitivity’ is used to make the corrected sensitivity file. It
should be noted that this method makes assumptions about the speaker box quality and stability of the
instrumentation. This method also uses a relatively small number of microphones and frequencies to
adjust all array microphones at all frequencies.

12

Instrumentation: The instrumentation calibration is used to correct the nonuniform amplitude and
phase characteristics of the instrumentation. Corrections can be made for the frequency response of the
microphone diaphragm at atmospheric pressure, microphone preamplifier, microphone power supply,
filter, institutional wiring, and microphone diaphragm response to nonatmospheric pressures.
Corrections may be selected for each type of instrument individually and may apply to the amplitude,
phase, or both. The correction may come from a calibration of the individual instrument or from a
representative curve fit for that model of instrument.

The instrumentation calibration uses the assumption that the shape of the frequency response of each
instrument does not vary with time. The sensitivity calibration is meant to take into account the shifts up
and down in the amplitude response of the system. Before using any calibration correction, each
individual instrument component needs to be calibrated and modeled. The microphone diaphragm is
calibrated with an electrostatic actuator; all other instruments are calibrated by measuring a transfer
function with noise injection. Calibration curves for the individual instruments and the delta pressure
response of the diaphragms are made with the MATLAB program ‘MakeMicModel’; representative
calibration curves for the instrumentation model type are made with the program
‘MakeRepMicModel’. The calibration curves are stored in the Instrumentation Calibration Files in a
netCDF format. All of the corrections are stored as neural net curve fits. The diaphragm response is
modeled as a function of wave number. The delta pressure response of the diaphragm is modeled as a
function of wave number and pressure. All other instrumentation components are modeled as a
function of frequency. All dependent variables in the neural net curve fits are normalized to a mean of
zero and a standard deviation of one. The mean and standard deviation of the data used to generate the
curve fits are also stored in the calibration file.

Free Field: The free-field correction accounts for the physical response of a microphone in a free
field. Application of the correction is selected in the Calibration dialog from the Control Interface. In
general, the correction should be off, unless freestanding microphones are used. The correction is a
polynomial curve fit that characterizes the curve supplied by the manufacturer for specific microphone
model types. The curve fits for B&K 4135 and GRAS TMS140BF are currently in the processing
software. The microphone model information contained in the raw data file is used to select the proper
curve fit. The polynomial curve fit for other models of microphones must be added to the processing
software in the freefield subroutine before this free-field correction can be used with those models.

Installation: The installation calibration accounts for the installation effects of the microphones in the
array. The response of a microphone is highly dependent on its immediate surroundings. The instal-
lation correction may be either a specified constant decibel level or a position and wave number
dependent model based on careful measurement and stored in a netCDF format calibration file. To have
no installation correction, select the constant installation correction and enter ‘0’ dB. To correct for a
pressure doubling due to microphones flush mounted in a surface, select the constant installation
correction and enter ‘6’ dB. More complicated installation corrections may be applied with the position
dependent file option.

The position dependent file option assumes that the effect of installing microphones in an array can be
measured and modeled as a function of wave number and microphone position independent of time.
This option is appropriate for an array with complex construction such as mounting microphones
recessed behind a porous screen. The array must be calibrated and modeled before using this option.

13

First calibrate a noise source in an anechoic chamber with a well calibrated microphone. The locations
of the microphone must be known in the calibration noise source coordinate system. The calibration
noise source coordinate system, x y zc c c, ,(), is another form of a model coordinate system. If the
calibration source has an axisymmetric or nearly axisymmetric sound field, the z-axis of the calibration
noise source coordinate system must be aligned with this acoustic symmetry axis. For example, if the
calibration source is a speaker, place the z-axis of the coordinate system along the speaker axis, pointed
away from the speaker. The x-axis and y-axis are placed in the plane of the speaker to form a right
handed Cartesian coordinate system. To work with a turntable and “seesaw”, place the calibration
source on the turn table with the y-axis aligned with the pivot of the turn table. The seesaw should
rotate about the x-axis of the calibration source. When the measurements are set up with the turntable
and seesaw as described above and shown in figure 5, the angle of the seesaw, αsd , the angle of the
turntable, βsd , and the distance from the array center to the calibration noise source center, rsd , are
related to the position of the microphone in the calibration noise source coordinate system as:

x r

y r

z r

c sd sd sd

c sd sd

c sd sd sd

= − ⋅ () ⋅ ()
= − ⋅ ()
= ⋅ () ⋅ ()

cos sin

sin

cos cos

α β
α

α β
(26)

A spherical coordinate system is also used with the speaker. The origin of the spherical coordinate
system is also at the center of the speaker. The radius, rc , is measured from the origin at the speaker
center, the polar angle, θc , is measured from the positive z-axis, and the azimuth angle, φc , is measured
in the x-y plane from the x-axis. The spherical coordinates are used with the curve fitting routines for
the speaker acoustic field. The transforms between the Cartesian and spherical coordinates are:

r x y z

z

r
y x

c c c c

c
c

c

c c c

= + +

=






= ()

−

2 2 2

1θ

φ

cos

atan2 ,

(27)

x r

y r

z r

c c c c

c c c c

c c c

= ⋅ () ⋅ ()
= ⋅ () ⋅ ()
= ⋅ ()

sin cos

sin sin

cos

θ φ
θ φ
θ

(28)

Long time histories of the reference signal and measurement microphone must be simultaneously
acquired with the microphone in many positions. The measurements are first processed with the
C program ‘spdefxferfun’ to make transfer functions of the acoustic field referenced to the reference
signal. The resulting file is then processed with the MATLAB script ‘MakeSpeakModel’ to make a
neural net model of the transfer functions in the acoustic field of the noise source. This script generates
a netCDF file.

Second, the array is calibrated in the anechoic chamber with the calibration noise source. This
measurement should be made as close in time as possible to the pistonphone calibration of the array
microphones. The positions of all of the array microphones must be known in the calibration noise

14

source coordinate system. When the calibration source is on the seesaw and the array is on the
turntable, the array microphone positions can be easily found. Consider the speaker to be in the model
coordinate system and the array in the array coordinate system. Consider a temporary wind tunnel
coordinate system aligned with the array coordinate system when the turntable is in the neutral position
at βsd = 0. The microphone locations in array coordinates may be transformed into the calibration
noise source coordinate system by first using the o2wt program with:

arrayabsxyzwtc

arratabsrotwtc

= ()
= () () − () ()()

0 0 0

0 0 1 0 0

, ,

cos , ,sin , , , sin ,cosβ β β βsd sd sd sd
(29)

then applying the wt2o program on the result with:

modelabsxyzwtc

modelabsrotwtc

= − ⋅ () ⋅ ()()
= − () () () − ()()

0

1 0 0 0 0

, sin , cos

, , , ,cos ,sin , ,sin , cos

r rsd sd sd sd

sd sd sd sd

α α
α α α α

(30)

The array measurements are processed by the C program ‘sparrayxferfun’ to generate transfer
functions of the microphones in the array. The resulting file is processed with the MATLAB script
‘MakeInstalModel’ to generate a a neural net curve fit for each microphone in the array. The curve fits
are stored in a netCDF file.

Directivity: The directivity calibration accounts for the directional response of the microphones as
installed in the array. This directivity is different from the directionality of the beam in the phased array
processing. The directivity correction is a function of wave number and scan point location. If the
directivity correction is activated in the Calibration dialog in the Control Interface, then a netCDF
format file containing the directivity curve fit must also be selected.

The directivity correction assumes the directivity response of the array depends on the wave number
and direction (θa and φa) and does not depend on distance between the array and the sound source.
Before using the directivity correction, the array must be calibrated and a model made of the array
directivity. The directivity model is made by first recording measurements with the array of the
calibration source at a reference location in the anechoic chamber. The calibration source signal must be
recorded simultaneous to the array signals. Next, make measurements with the source in many direc-
tions. Process all these directivity points with coordinate transformations that put the array in the array
coordinate system and the calibration source in the model coordinate system. Figure 6 shows these
coordinate systems for placing the array on the turntable and the calibration noise source on the
seesaw. With this configuration, processing may proceed by using the coordinate transformation
parameter listed in equations (29) and (30). Run the program ‘dirprennet’ on all the processed direc-
tivity measurements to produce files of directivity information. Run these files through the MATLAB
program ‘MakeDirModel’ to generate the netCDF file that contains the neural net curve fit for the
directivity.

Density: The density correction is a scaling of aeroacoustic sources to the reference conditions. It is
assumed that the acoustic pressure radiated by a source is proportional to the ambient static pressure
and that the ideal gas law holds.

15

pacoustic s∝ ρ (31)

p RTs s s= ⋅ρ (32)

The acoustic pressure at the reference and tunnel conditions can be related as:

p p
p T

p Tacoustic ref acoustic tunnel
s ref s tunnel

s tunnel s ref
, ,

, ,

, ,
= ⋅

⋅
⋅

(33)

dB dB
p T

p Tref tunnel
s ref s tunnel

s tunnel s ref
= + ⋅

⋅
⋅







20 10log , ,

, ,
(34)

The reference conditions are ps ref, =2116.8 pounds per square foot and Ts ref, =519° Rankine.

Atmospheric Attenuation: Atmospheric attenuation accounts for excess attenuation of sound waves
as they propagate through the atmosphere. This correction has not yet been implemented.

Scanning Surface Definition
MAPPS can scan any surface in space which has a single intersection with a ray projected from the
array center. In other words, the scan surface cannot fold back on itself as seen from the array. This
limitation is due to the fact that the visualization interface program maps the surface onto a flat plane.
The scan surface is defined in model coordinates and inches. This allows the user to define a surface
and have that surface move with the model by only specifying the coordinate system transformation
from the model to the wind tunnel coordinates. Multilevel grids can be processed but must be displayed
with programs other than the current configuration of the MAPPS visualization software.
A predefined scan surface can be read from a Plot3d single zone binary formatted file (ref. 1). This
allows for the definition of a complex shaped scan surface. For example, one test had the scan surface
follow the dihedral of the model to give a relatively constant distance of the scan surface from the
model surface. The user can also define a planar scan surface from the Process Control Interface by
defining the upper left, lower left, and upper right corner points and specifying the grid density.

Plane wave processing can also be performed which only scans along directional lines without regard
to distance. When plane wave processing is selected, the region to scan is defined by angles instead of
a surface.

Data Acquisition Blocks
The amount of raw data required for processing depends on the sample rate, fast Fourier transform
(FFT) block size (or required frequency resolution), and number of FFT blocks to average. Normal
data processing uses between 100 and 400 FFT averages depending on the relative levels of the
background and signal noise levels. This number of averages results in 1 to 5 seconds of data being
required for high sample rates with a moderate frequency resolution. Some tunnels have a low
frequency oscillation in the flow which requires the tunnel condition measurement systems to average

16

over as long as 20 seconds. Data acquisition for array measurement should span the same period of
time as the tunnel condition measurements to obtain good correlation between the two. Taking array
data, especially at the higher sample rates, for this 20-second period is prohibitive due to the available
memory on the acquisition cards and the disk storage required. To compensate for this time difference
the raw data is block decimated in time to store only the amount necessary for array processing yet still
be congruent with the tunnel condition measurement. The user specifies the number of samples per
data block, the number of seconds to skip between data blocks, and the number of data blocks to
acquire to yield an effective time span for data acquisition. The limitation for this method is that it
creates “data walls” between acquisition data blocks. For processing, the user specifies the FFT block
size (or frequency resolution), the number of FFT blocks per group, and the number of groups. Thus
the user can process a subset of the stored data as long as the FFT blocks do not cross the data walls
created when the data was digitized. The interface alerts users if they enter combinations which cross
these data walls. This decimation method is illustrated in figure 7.

Microphone Health Checking
Array measurements generate a large amount of data from many microphones. This large volume of
data makes it inefficient to check each block or channel of microphone data by hand for data quality.
Three automated data quality checks were implemented to ensure that only good data were used in the
processing. The first is a simple band edge check to indicate clipping in the analog to digital (A/D)
process. The second is a check for flat spots in the signal, which indicate clipping in the analog
hardware such as amplifiers. The third check is to determine acceptability of the overall levels of the
microphones. Given that the primary source of the measured noise is generally near the normal to the
array, it can be assumed that all the microphones should see a similar amplitude signal. Using this
assumption, a scheme to check for amplitude deviation is used. The block averaged individual
microphone spectra are averaged over all the microphones. This signal is then power summed over a
specified frequency range to yield a benchmark level. Each individual microphone averaged spectrum is
similarly summed. A microphone is determined to be bad if its individual level differs by more than a
specified decibel value from the benchmark level. This level change is either an indication of a bad gain
setting or that the calibration level in the electronics has slipped or instrumentation has gone bad. The
delta decibel check can effectively be removed by setting the decibel level to a high number. This might
be necessary if the primary noise source is at an oblique angle to a large array, thus causing a
significant variation in sound pressure across the array. Experience has shown that three decibels is a
good level for sources normal to the array and six decibels for moderate angle or close sources.
Additionally the frequencies for the summations should be within the desired measurement range. The
current acceptable limit for processing is that 80% of the FFT data blocks must be considered good.
Processing will not complete and the user will be notified if more than 20% of the FFT data blocks are
flagged as bad.

Added Gains
Many times during system checkout there is no calibration information available for processing, yet the
processing needs to be run. The added gains feature allows the user to generate images that are accurate
in location but ambiguous in amplitude by generating gains for each channel which will bring them to a
common level. The algorithm for the added gains calculation is the same as that used in the delta
decibel health checking. The delta decibel level generated by subtracting the individual microphone

17

frequency sum from the summed microphones frequency sum is considered a channel gain. This has
the effect of normalizing the amplitudes to the overall summation level. This feature does not correct for
phase differences between channels and ignores all other gains.

Noise Reduction Methods
When the array is used to measure noise in a wind tunnel, the signals the microphones measure consist
of sound from any aircraft model plus background noise. Noise contamination due to wind noise over
the microphones can be reduced by modifying the diagonal elements of the cross-spectral matrices
before scanning. Four methods for modifying the cross-spectral matrices are available. The method
labeled “None” will leave the cross-spectral matrix as it is. The “Zero Sub” method sets all the
diagonal elements to zero and adjusts the amplitude of the scans to compensate for the zeros in the
diagonal. The “Avg Sub” and “Avg Sub 2” methods substitute estimates of the autospectra for each
microphone without the uncorrelated background noise. The Avg Sub method replaces the diagonal of
the cross-spectral matrix with the average amplitude of the cross spectra (excluding the diagonal value)
along a microphone row. The Avg Sub 2 method uses the Avg Sub results and refines the estimate by
normalizing with the relative amplitude of the cross-correlation values. If there is uncorrelated
background noise, Avg Sub 2 is usually the best method for reducing the noise contamination.

Side Lobe Reduction
Another enhancement method is “Side Lobe Reduction”. Side Lobe Reduction removes any side
lobes that show a negative amplitude. This option removes the highest side lobe from a one-
dimensional array scan of a point source. This option has not been effective with two-dimensional
arrays measuring real sources.

Processing Control Interface

The parallel phased-array processing part of MAPPS can be executed in either batch or interactive
mode. The interactive mode is controlled through an X-Motif graphical interface that allows the user to
easily set all options used in the processing. The various windows take into consideration the informa-
tion contained in the raw data files and allow the user to set the proper process control parameters. This
prevents processing with inappropriate settings. These option settings are written to an ASCII file that
is then read by the Control Process.

Main Window
The Processing Control main window is used to set the processing parameters and access other dialogs
via pull down menus. The main window with the menu options is shown in figure 8. Data entry fields
are indicated with white boxes and static text fields are shown with gray boxes. Pop up menus are
indicated by shaded rectangles. Editable fields will turn red when an unacceptable number is entered.
Each field is described below.

18

Pull Down Menus:

File: This pull down menu allows the user to save and load previous
setups of the control interface as well as load the parameters from a
specific raw data file.

Display: Pull down menu that allows the user to display information about a
specific data file by showing the actual netCDF header information
(fig. 9) or a table of information about the instrumentation contained
in the specified raw data file (fig. 10).

Parameters: This menu activates the Custom Array, Processing Geometry,
Processor Setup, Calibration, Flow Conditions, and Preferences
windows described in later sections.

Upper Left Area:

Test, Run, Point, Array Point Number: The raw data file designators set when Load Raw
Data File command was executed.

Version Number: The processed data version number used to track processing. This
field is used to distinguish between different process settings applied
to the same raw data.

Mid Left Area:

FFT Block Size: The number of samples for each FFT to be performed. An
approximate number can be entered and it will be rounded to the
closest number of 2l * 3m * 5n

FFT Freq Resolution: Hertz per bin from the FFT determined by (Sample Rate) / (FFT
Block Size). An approximate number can be entered and it will be
changed to the closest number that meets the FFT Block Size
limitations.

FFT Blocks Per Group: The number of averages for each data block available in the raw data
based on the FFT Block Size is shown in the Available column. The
user enters the desired number in the Requested column. If the
Requested column is not an acceptable number then the field will
turn red.

Number of FFT Groups: The number of groups to be processed. The maximum number of
averages to perform = (FFT Blocks Per Group) * (Number of FFT
Groups). The number of data groups contained in the raw data is
shown in the Available column and the user enters the desired
number in the Requested column. If the Requested column is not an
acceptable number then the field will turn red.

Time Span (Sec.): The time spanned by the combination of the above parameters using
the skip block methodology defined in a previous section.

Sample Rate: The samples per second with which the data was acquired.
Upper Frequency: The least of the internal and external upper limit filter frequencies,

and the analog to digital frequency span.
Lower Frequency: The greatest of the internal and external lower filter frequencies.

19

Upper Right Area:

Processing Type: Pop up menu that contains the processing type. The only type
available in this release is Regular.

Noise Reduction Method: Pop up menu for choosing the noise reduction method as described
above.

Side Lobe Reduction: Option to activate the Side Lobe Reduction described above.
Convection Correction: Option to activate convection correction application.
Added Gains: Option to turn on/off added gains.
Time Domain Windowing: Choice of the time domain window to be applied to the time data

before the FFT is performed.
Mid Right Area:

Antenna Gains (Use Gains From File or Use Value): Use gains from file will use a sum of
preamplifier, power supply, and external filter gains applied to each
channel individually. Use Value will ignore the internal gains and
apply the specified gain value to all channels.

Bad Microphone List: Any channels listed will be ignored in the data processing. Note that
the first channel is channel 1.

Array Chosen: This field indicates if a saved array subpattern has been chosen in
the Custom Array window. If Full Array appears then no preset
array subpattern has been selected.

Processing Method: Information box indicating which processing method will be used.

Lower Area:

Input Frequencies to be Processed: The desired frequencies to be processed are entered in
this field. Single frequencies can be entered separated by a comma.
Frequency ranges can be entered by specifying the start frequency
and the end frequency with the skip frequency value entered between
them in parenthesis. Note that a (1) is every frequency, a (2) is every
other frequency, etc. Combinations of single frequency values and
frequency ranges can be made in this field. For example
“1000(2)2000,5000” will process every other frequency from 1000
to 2000 Hz and 5000 Hz.

Frequencies Processed: This field gives the actual frequencies that will be processed given
the limitations of the frequency resolution on the requested
frequencies entered.

Number of Frequencies: The total number of frequencies that will be processed.

Bottom Area:

Execute: Button to start interactive execution of the processing software.

20

Customize Array Window
The Custom Array Window is activated by selecting Array under the Parameters pull down menu. This
window (fig. 11) is used to indicate the status of the microphones as indicated by the acquisition
system and to select which microphones will be used for processing. The purpose of selecting subsets
of microphones (subarrays) is that processing different geometric configurations of microphones
yields different frequency and resolution characteristics. For example, if the noise source is a distrib-
uted source such as jet noise, selecting a small array of closely spaced microphones will produce better
estimates of the source strength than using a large array. The more microphones in an array, the better
the array will be at separating sources from background noise; thus if background noise is high,
selecting a subarray may not yield beneficial results.

The x and y coordinates in the array coordinate system from the Raw Data File are used to display the
microphone array pattern. The array pattern ID, run, and point number are displayed in the title area.
Left mouse button clicking on a “microphone” will toggle the microphone status between active and
inactive for processing. Right clicking on a microphone will display the channel number in the lower
right corner of the window. Changes to microphone status are not registered until “OK”, “Apply”, or
“Save...” are clicked. Changes applied to this window may be saved to a file and later reloaded using
the “Save...” and “Load...” buttons. Clicking “Cancel” will close the window without applying any
changes.

Active microphones used in processing are drawn as solid. User declared inactive microphones selected
in this window are drawn as black dashed circles. Variations of the symbols indicate why a microphone
will not be used for processing. User declared bad microphones entered from the main window are
drawn with a red X through the center of a black dashed circle. A bad channel declared from the data
acquisition system that is declared bad in the raw data file is drawn as a red dashed circle. Microphones
declared bad in the raw data file and in the user-defined area of the main window are indicated by a red
X through the center of a red dashed circle.

Processing Geometry Window
The Processing Geometry Window is activated by selecting Processing Geometry from the Parameters
pull down menu. The processing type and scan surface to be used are set in this window. The two
choices for processing type are spherical and plane wave and are selected with the processing pop up
menu located in the upper half of the window. Figure 12a shows the plane wave processing chosen and
the configuration for entering the scan geometry for plane wave processing. The phi and psi angles are
all that are required to be entered for plane wave processing since the scanning is performed along
radial lines specified by angles from the normal to the array. Phi is the latitudinal angle with ϕa = 90˚
in the direction of the positive ya-axis. Psi is the longitudinal angle with ψ a = 90˚ in the direction of
the positive xa -axis. Phi and psi are shown in relation to the array Cartesian coordinates in figure 12b.

Spherical processing requires the definition of a scan region in space as described in the Scan Surface
Definition section. Figure 13 shows the Processing Geometry window in the configuration for entering
a scan region defined in a file. Figure 14 shows the window in the configuration for defining a
scanning plane in this window.

21

Processor Setup Window
The Processor Setup Window is activated by selecting Processor Setup from the Parameters pull down
menu. The processing distribution configuration is controlled through this window. Details of the data
processing are presented in the Parallel Processing Program section. There are four main processes
within the data processing software: control, input, parallel processing, and output.

The Processor Setup Window has five sections as shown in figure 15. The first three sections are used
to enter the processor name and the executable path to the processing code on that processor for the
Control, Input, and Output processes. The Computation Processor Section allows the primary
processing to be performed on multiple CPUs across multiple platforms. The user enters the name of
the platform, executable path on that platform, and the number of CPUs to use on that platform. One of
the platforms that are entered must be designated the lead process. Also specified in this window is the
output path for the processed data. The Raw Data and the Scan Geometry are indicated in this window
for information purposes.

Calibration Window
The Calibration Window is activated by selecting Calibration from the Parameters pull down menu.
This window is used to control all calibration functions. This window has two main areas, one for
Pre Scan and one for Post Scan options. The two methods available for Pre Scan calibration are Ames
and Boeing 95 and they are selected through the pop up menu at the top of the Pre Scan area. The
Boeing 95 method results in a blank Pre Scan area as these calibrations are performed in an external
program prior to data processing. The Ames method results in the dialog as shown in figure 16. The
three areas of calibration contained in the Pre Scan area are for control of sensitivity, individual
instrumentation, and installation calibration. The sensitivity calibration values are input into the
program from the ASCII file in the Sensitivity Source File field. The Calibrator or Speaker Box
switches indicate the method of generating the values in the Sensitivity Source File.

The calibration “cascade” for the individual instrumentation is controlled through the Individual
Instrumentation Calibration area. The cascade is read from left to right using the pop up menus for
each instrumentation type. The first column of pop up menus refers to the individual instrumentation
and the second column refers to the model type calibration. These columns take precedence in left to
right order. For example setting both the Serial # and the Rep. columns to “on” means that the
program will first look for a calibration curve for that specific serial number and if it is not found will
look for a calibration curve for that model type. If the Serial # is “on” and Rep. is “off”, then the
code only looks for Serial # and returns ‘0’ if it is not found and does not progress to the
representative fit. Likewise, if the Serial # is “off” and the Rep. is “on”, then the program will only
look for the model type representative curve and return ‘0’ if it is not found. The third column of pop
up menus contains the choice to apply the amplitude, the phase, or both amplitude and phase
calibrations for that instrumentation. The neural net curves are contained in the netCDF format file
indicated in the Instrumentation Calibration File field.

There are two options for the installation gains. A constant value to all channels can be applied by
selecting the Constant button and entering the value in the text field. A frequency dependent correction
can be applied by selecting the From File button and entering the netCDF file name in the text field. If
no installation gain is desired then the user should select constant value and enter a ‘0’.

22

The three Post Scan calibrations are controlled in the lower region of the Calibration Dialog. Each of
the Atmospheric Attenuation, Directivity, and Density options has an On/Off pop up menu. The
Directivity must have a netCDF file containing the neural net curve fit if it is activated.

Flow Conditions Window
The Flow Conditions Window is activated by selecting Flow Conditions from the Parameters pull
down menu. In this window (fig. 17) the flow conditions may be changed to values different from
those saved in the raw data file. The raw data file contains the flag wt_data_quality that is set to either
good, approximate or absent. The Control Interface checks the wt_data_quality flag when a raw data
file is loaded and activates this window if the flow condition data is flagged as approximate or absent.
The user can also activate the window from the Parameters menu and override the tunnel condition data
that are labeled as good in the raw data file. The values contained in the raw data file are shown in the
noneditable fields along the right side of the window with corresponding editable fields next to them
where the user can enter the desired values. When the user selects “OK” or “Apply”, a confirmation
dialog box appears to ensure that the proper action will be taken. Data entered and passed to the
processing code does not change the raw data file values. If it is determined that the values in the raw
file need to be changed, then a separate code should be run that changes these variables and updates the
data quality flag. The inclusion of this option allows continued data acquisition and processing if the
tunnel conditions are not immediately available.

Preferences Window
The Preferences Window is activated by selecting Preferences from the Parameters pull down menu.
This window is where general preferences for processing are set and is shown in figure 18. Currently,
only the microphone testing parameters are set here. The lower and upper frequency summation limits
are the frequency range to be used in the microphone health delta decibel test and the added gains
calculation. The delta dB level used to determine if a microphone is deemed good is also entered here.

Processing Software

The parallel processing portion of the MAPPS software has the capability to run in a single work-
station or a heterogeneous network of computers. The system processes the data on parallel processors
using the Parallel Virtual Machine (PVM) library. The main languages used are Fortran and C. The
following sections give a general description of basic PVM information and MAPPS processing
software.

Parallel Virtual Machine (PVM)
The Parallel Virtual Machine (PVM, ref. 2) library provides the capability for the program to run in a
network of processors. Another newer and improved library, MPI, was considered in the design
process, but was not implemented because it did not provide the capability to run heterogeneous
processors. PVM allows a heterogeneous network of parallel and serial processors to appear as a
single concurrent computational resource, the virtual machine. General information about PVM is
found in several sources. A complete overview of PVM is found at

23

http://www.epm.ornl.gov/pvm/pvm_home.html and a complete index for the PVM library is shown at
http://www.netlib.org/pvm3. All the information needed to use PVM is also described in the PVM
Reference Manual.

The PVM subroutines are intrinsically coupled and used inside the MAPPS processing software.
These subroutines add processors to the virtual machine, spawn tasks in each processor, transfer and
receive data between processors, and control all the information flow of the virtual machine. PVM has
to be previously installed in each processor to be used in the virtual machine. If PVM is not already
installed in a given processor, the PVM Reference Manual provides a complete description of how to
obtain and install the software.

The environmental variables and aliases PVM_ROOT, PVM_ARCH, pvm and pvmd should be defined
in each processor under the account that will execute the MAPPS program. For example:

setenv PVM_ROOT /usr/local/pvm3
setenv PVM_ARCH SGI64
alias pvm ‘$PVM_ROOT/lib/pvm’
alias pvmd ‘$PVM_ROOT/lib/pvmd’

It is very convenient to use the same path definition in each processor. PVM_ROOT gives the
location of the PVM directory, and PVM_ARCH defines the particular architecture of the processor.
PVM_ARCH is defined as SGI64 in the newer Silicon Graphics workstations or servers. Names
corresponding to other architectures are listed in the PVM Reference Manual. All executables of the
MAPPS processing software should be located or linked to the default location once the PVM software
is installed. This must be done in each processor to be used. A convenient way to define these default
locations is $PVM_ROOT/pvm3/bin/$PVM_ARCH, or $HOME/pvm3/bin/$PVM_ARCH, if the user
does not have the required privilege to copy into the system directories. It is recommended to define the
aliases and environmental variables in a shell file executed at login (for example .cshrc) of each
processor of the virtual machine. PVM must be installed even if all processes are to be executed on the
same CPU.

PVM has to be activated before running the MAPPS software. PVM is started on any of the
hosts in the virtual machine by executing the pvm command which is located in the subdirectory
$PVM_ROOT/lib. Once the PVM console is started, the MAPPS processing program may be
executed. It is also convenient to know that the PVM console may be started and stopped multiple
times on any of the hosts without affecting PVM or any other application. A list of PVM commands is
obtained by typing “help” on the PVM console. The PVM console stops with the command “quit”,
and terminates all PVM processes with the command “halt”. PVM must be started manually before
batch execution but is automatically started when the Process Control Interface is launched.

MAPPS Processing Software
MAPPS processing software is composed of four programs: the Control, the Input, the Parallel
Processing, and the Output programs. This division provides the capability to run different aspects
of the processing software on separate computers. All the software is controlled with the Control

24

program from a workstation where the user has the required network privileges to access the other
computers. The acoustic data is read with the Input program which is executed on a processor that has
access to the input and calibration data files. The parallel processing of the acoustic data is run with the
Processing program on a set of parallel processors. The results are stored to disk with the Output
program. The MAPPS processing software components may be run in a single workstation or spread
over several workstations. The general flow of processing information is shown in the MAPPS flow
map diagrams in Appendices 1 through 4. Each subroutine includes a detailed description of its
function and variables. This information includes a description of each modification, the definition of
each input, local, and output variables, and a comment of each processing step inside the program. A
general description of the MAPPS programs is given below.

Control Program
The Control program is the main program of the MAPPS processing software. This program is called
to initiate processing by either the Control Interface or an executable script. Together with this program,
there are two makefiles to compile the subroutines and create an executable code, called
Makefile.SGI64 and Makefile.SGI64_debug. The first makefile is for normal execution of the
program and the second is for execution in debug mode. Their executable files are ‘mapps_con’ and
‘mapps_con_debug’, respectively.

The main actions in the mapps_con program are:

1. Enroll itself with the PVM daemon (pvmfmytid).
2. Read the inputs for processing (nmlinput).
3. Configure the virtual machine to run all the programs, start the input program,

start the parallel processing programs (hosts).
4. Send the required input parameters to the Input program (pvm).
5. Modify the units of input parameters to metric units (rosetta).
6. Generate the coordinates of the scan plane (gensp or genpl).
7. Send the required parameters to lead Parallel Processing program (xferout).
8. Send all other parameters to lead Parallel Processing program (nmlsend).
9. Receive and print end-of-run flags from Input program (pvm).

10. Receive and print end-of-run flags from lead Parallel Processing program
(pvm).

11. Receive and print end-of-run flags from Output program (pvm).
12. Exit the PVM daemon (pvmfexit).

A typical interactive run in the ‘pmat1’ processor, executing eight parallel tasks in the ‘leonardo’
processor, will produce print statements on the screen similar to the ones shown below.

comp_proc(i) = leonardo 524288 1
raw_exec = /usr/local/pvm3/bin/SGI64/mapps_input
raw_proc = pmat1
input_tid = 262148 1
comp_exec(i) = /usr/local/pvm3/bin/SGI64/mapps_proc
comp_proc(i) = leonardo

25

num_cpu(i) = 8
cpu_tids(i) =524289 524290 524291 524292 524293 524294 524295 524296

pvmfconfig:
i info nhost narch dtid speed name
17 1 2 1 262144 1000 pmat1
2 1 2 1 524288 1000 leonardo
End of hosts.F

0 MAPPS program version 4.0 number 25
0 run version number 10 in process.
 Successful completion of control program,
 Parallel processes running on background.
 Successful completion of parallel processes.
 Output process running on background.
 Successful completion of output process.

The first group of statements show the executable programs, the processors, and the task ID numbers
(tid) generated in the hosts subroutine of the control program. The next group of statements shows the
current version number that is being processed. The last group of statements is printed to indicate when
the control parallel processes and output programs are started and finished.

If an error is detected during execution, an error message is printed showing the name of the subroutine
where the error occurred. In particular, a message is printed if too many of the blocks or channels are
flagged as bad according to the criteria imposed on the acoustic data in the health matrix calculation.

Once the program is finished, the output file is stored in netCDF format in the location specified in the
input control with the variable out_path.

Input Program
The Input program performs the data gathering and memory allocation functions for MAPPS. A
temporary netCDF file is created that contains the header information from the input raw time history
netCDF file. The new netCDF file will be read later by the Output program to create the output netCDF
file.

The main actions in the ‘mapps_input’ program are:

1. Enroll itself with the PVM daemon (pvm).
2. Get the task ID of the parent process (pvm).
3. Receive the inputs from the control program (pvm).
4. Eliminate blank spaces of strings.

26

5. For processing boeing data, if data_source is ‘boeing’:
Allocate memory for cross-correlation matrix (getmem32)
Open and read netCDF file (get_nc_boeing).
Read SWTS wind tunnel parameters (read_nc_swts).
Read model and array coordinates (read_nc_xyz).
Read dimensions and attributes of data (read_nc_boeing).
Close netCDF file.
Go to step 9 below.

6. Allocate memory for raw data (getmem32).
7. Open and read netCDF file (get_nc_file).

Read SWTS wind tunnel parameters (read_nc_swts).
Read model and array coordinates (read_nc_xyz).
Read dimensions and attributes of raw time data.

8. Get calibration data:
Read sensitivity calibration slopes(get_sensitivity).
Get instrumentation amplitude and phase corrections(get_nc_cal).
Get installation corrections (get_nc_install).
Get free-field calibration (freefield_coef).
Get directivity calibration (get_nc_directivity).

9. Send signal to control processor (pvm).
Receive task ID of lead parallel process (pvm).

10. Send calibration and wind tunnel data to lead process (send_nc_data).
11. Send acoustic time data to lead process (send_time_data).
12. Write messages if needed.
13. Exit process (pvmfexit).

Parallel Processing Program
The Parallel Processing program is run in the lead process and the subordinate parallel processes.
These processes can be performed in one or different CPUs. The leader receives the data from the
Control program and the Input program. If the number of processes is greater than one, the leader
creates the work assignment tables to subdivide the work between all the parallel processes and sends
the data to all the subordinate processes. The leader also receives all the input declarations from the
control process to be included in the output file. All the parallel processes perform the FFT of the
acoustic data, the pre-scanning calibrations, the scanning of the acoustic sources for each assign
frequency, and the post-scanning calibrations. The leader accumulates the data, adds the output
processor to the virtual machine, and sends the output data to the output process. The leader also sends
the end-of-run flag and any error message to the control process.

The main actions in the ‘mapps_proc’ program are:

27

1. Enroll themselves with the PVM daemon (pvm).
2. Receive input parameters (input).

Leader receives data from control processor (pvm ,controlupk).
If number of processors is greater than one:
-leader sends data to subordinate parallel processes (pvm, controlpak).
-subordinates receive data from leader (pvm, controlupk).
Leader defines block and frequency assigment tables, and sends them to
subordinates processes if needed.
Subordinates receive assignment tables if needed.

3. Leader receives all other input declarations from control program to be sent to
the output program to be included into the output file (input_lead).

4. Allocate memory for large arrays (getmem)
5. If ‘boeing’ process, go to step 7*.
6. Leader receives raw time acoustic data from input program and sends it to

subordinate parallel processors if needed (distrib).
Subordinate parallel processors receive raw time acoustic data (getdata).

7. Perform main calibration and scanning processing (DoIt).
Initialize block health matrix, and set band edge and flat spots flags in health
matrix (calt).
Do windowing and FFT (dofft).
Do sensitivity calibration of amplitude and phase (calf3).
Leader accumulates sum of FFT data from all processes, processes caldb, and
returns data to all subordinate processes (globsum).
Leader gets total power and average power for each channel, sets delta decibels
and bad channel flags in health matrix, defines output block health matrix and
block and channel array flags, and adds gains to FFT data if required (caldb)
Get cross-correlation matrix of each scanning frequency (xcor_new).
Get global average of scan power (globavg).
*For boeing data (if data_source is ‘boeing’)
 Allocate memory for cross-correlation matrix (getmem32)
 Get cross-correlation matrix and input data (get_rcr_boeing).

Change model coordinates to wind tunnel coordinates (o2wt).
Store diagonals of matrix, and accumulate individual spectrum arrays and
average (spectrum).
Modify diagonals in matrix if it is required (diagf).
Perform planar (scanp) or spherical (scans) wave scanning.
Perform density attenuation calibration correction (density_cor).
Perform directivity calibration if it is required (directivity_cal).
Get maximum and average scan power, and restore diagonals into cross-
corrrelation matrix (scanrcr).

8. Leader adds output process to virtual machine (openout).
9. Leader sends input declarations, scan geometry, and health matrix to output

process (sendout).
10. Subordinates processes send scan results to leader and leader sends scan

results to output process(scanout).

28

11. Set a PVM barrier to all parallel processes (pvm).
12. Leader sends end-of-run flag to control process if run is interactive, or sends

error message if any error has been detected (pvm).
13. Parallel processes exit PVM (pvmfexit).

Output Program
The Output program accepts the results from the lead parallel process and combines the results with the
setup and raw data information for output to a netCDF file. This process must have access to the file
created by the Input program and be run on a processor that has access to the output data storage
disk. The main actions in the Ômapps_outputÕ program are:

1. Enrolls itself with the PVM daemon (pvm), and gets task identification
number of lead process (pvm).

2. Receives messages from lead process (pvm).
3. Initializes arrays or allocate memory to arrays (getmem).
4. Receives general data, scan geometry, and microphone health matrix (getnml).
5. Receives scan power data (getscan).
6. Calls C subroutine to write netCDF output file (write_out_nc).

Writes netCDF output file (out_nc).
Duplicates netCDF header file (ncdup).
Writes scan power results into netCDF output file (ncpro12).

7. Sends end-of-run flag to control process, if run is interactive.
8. Exits PVM process (pvm).
9. Stop all PVM processes if error is detected (pvm).

Included Subroutines
The included subroutines are common files used in the Fortran or C routines. There are general files
used by all the programs, and particular files used by singular programs. The general files are
‘parameter.h’ and ‘fortcall.h’. The singular files are ‘ncdup.c’, ‘ncpro.c’, ‘corrections.c’, and
‘fortranarray.c’. There are two other general files, ‘fpvm3.h’ and ‘netcdf.inc’, that may be stored
together with all the included files or may be stored more conveniently in general locations together
with the PVM and netCDF software, respectively.

The main parameters of the MAPPS programs are defined in the parameter.h file. All these parameters
have been defined as integer*4 data type and are:

‘mproc’ - the maximum number of parallel processors
‘mrows’ - the maximum number of samples in a data block for each microphone
‘mmic’ - the maximum number of microphones, plus one for the reference channel
‘mblks’ - the maximum number of raw data blocks
‘mfrq’ - the maximum number of frequencies to be processed
‘mscan’ - the maximum number of scanned points to be processed
‘mneu’ - the maximum number of neuron points for interpolation in calibration

29

The ‘fortcall.h’ file contains information required to correctly transfer parameter lists between Fortran
and C.

The ‘ncdup.c’ file duplicates the raw data netCDF file and sets the unlimited dimension as one. It is
included in get_nc of the Input program.

The ‘ncpro.c’ file writes the processing setup parameters and processing results to the netCDF output
file. It is included in out_nc of the Output program.

The ‘corrections.c’ file defines the free-field calibration corrections for 1/4 inch microphones, B&K
model 4135, and GRAS model TMS140BF. It is included in the freefield_coef of the Input program.
Corrections for additional models should be included in this file. This file also applies the general
neural net fit correction used in get_nncor of the Input program for calibration corrections.

The ‘fortranarray.c’ file provides the Fortran/C conversion of array elements. It is included in out_nc
of the Output program.

The PVM file ‘fpvm3.h’ defines all the Fortran definitions of the parallel virtual machine.

The netCDF file ‘netcdf.inc’ defines the Fortran interface for the netCDF calls.

Running in Batch Mode
The parallel processing can be run in batch mode to allow data processing without the requirement for
an operator to be present. This is accomplished through a shell script. Each run and point number must
have a unique settings file that can be created by using a text editor to modify a master settings file.
Once these settings files are created, they can be run using a script similar to that shown below. PVM
must have been activated by calling the pvm command and using the quit command from the terminal
window before the script can be run. This method meets the requirement to be able to process one
day’s runs for examination the next day.

echo ‘quit | pvm’
echo ‘105000PMA00014003cntrl10’
$PVM_ROOT/bin/$PVM_ARCH/mapps_con < 105000PMA00014003cntrl10
echo ‘halt | pvm’
echo ‘quit | pvm’
echo ‘105000PMA00014004cntrl10’
$PVM_ROOT/bin/$PVM_ARCH/mapps_con < 105000PMA00014004cntrl10
echo ‘halt | pvm’

The mapps_con is the executable of the MAPPS Control program. The settings files
‘105000PMA00014003cntrl10’ and ‘105000PMA00014004cntrl10’ are created from the settings file
generated from the Processing Control Interface.

30

Visualization Software

Efficient and versatile visualization of array processed results is an essential part of MAPPS. Display
of array results presents a complex problem for the system developer. Many instrumentation systems
produce easily understood and presented two- or three-dimensional data sets; however, array pro-
cessing results in five-dimensional data sets. The five dimensions consist of the physical x, y, and z
scan geometry as well as frequency and amplitude. The size and complexity of the results puts a larger
burden on the visualization software than in the past where the majority of effort was placed on the data
reduction. A commercial off-the-shelf graphics program was used as the foundation to reduce the effort
required for developing this complex visualization software. PV-WAVE from Visual Numerics
(http://www.vni.com) was chosen as the graphics foundation software for its ability to handle large
complex data sets. A custom user interface called Mview was written in PV-WAVE CL, a fourth
generation language for data visualization. Mview was written specifically to view data processed with
MAPPS and is designed to be easily extensible.

Main Module
The Main Module is created when Mview is launched and is shown in figure 19. This module is used
to load in the netCDF data sets for viewing. Multiple data sets can be loaded for comparison with the
name of each data set displayed in the text window of the Main Module. Once a data set is loaded, the
Overview Module will automatically be started. The Main Module is also used to launch functions that
affect the entire application, such as loading in a new color table. The menu choices for the Main
Module are:

File->Load: Load a data file in the MAPPS netCDF format for display.
File->Quit: Quit the application.
View->Source Integration: Start the source integration Module. This is used to load and

display the results of source integration processing.
Options->Load Color Table: Select a new color table that is applied to all windows.
Options->Animation Speed: Set the animation speed for all of the data sets to fast,

medium, or slow.
Options->Animation->Start ALL: Start the animation for ALL of the loaded data sets.
Help->Help: Display the Main Module Help file.

Overview Module
The Overview Module is launched when a data set is loaded in the Main Module and is shown in
figure 20. The Overview Module gives an overview of all the frequencies in this run/point and allows
the user to select which frequency is shown in other child modules. There are three values for each
frequency plotted in this window: Max, Avg, and Asp. Max is the maximum decibel value in the scan
surface independent of position for each frequency. Avg is the average decibel value of the noise map
for the scan surface for each frequency. The Asp line shows the average decibel value for all the good
microphones before scanning and is representative of a single microphone in the flow. The values of
the three curves and the current frequency are shown along the bottom of the window. The combination
of curves gives the user feedback on the level of the signals versus the background noise and the
dynamic range of the noise map for only those frequencies scanned. The selected frequency is shown

31

with a vertical line in the Overview window and can be changed in several ways. The slider bar can be
used to click and drag to a new frequency. The buttons at the bottom of the screen can also be used to
change frequencies one at a time. In addition, the “Start Animation” button can be pressed to
automatically march through all the frequencies starting at the current frequency. Press the animation
button a second time to stop the animation. Closing the Overview Module deletes the corresponding
data set from memory.

Various modules for looking at the data can be launched from the menus in this module. Changing the
frequency in this window automatically updates the frequency displayed in other child modules (e.g.,
Imager or Surf Modules). The menu choices for the Overview Module are:

File->Quit: Quit the Overview Module and any modules it has open and delete
this data set from memory.

View 2D->Imager: Start the Imager Module which projects the scan surface to a 2-D
flat surface.

View 2D->Individual Microphone Health:Start a window that indicates the status of all
microphones and blocks during processing.

View 2D->Combined Microphone Health: Start a window that indicates which FFT blocks
were actually used in processing after column and row rejection.

View 3D->Surf: Start the Surf Module. This module creates a 3-D surface where
elevation corresponds to dB level.

Help->Help: Display the Overview Module Help file.

Imager Module
The Imager Module is the primary means of data visualization in Mview. The Imager Module projects
the three-dimensional scan surface onto a two-dimensional plane for the frequency indicated in the
Overview Module. The window, shown in figure 21, is broken into four areas with the data displayed
on the right. Left clicking at any point on the image in this area will display the decibel value of the
nearest point on the scan surface.

Along the left of the window are three areas for controlling the display of data and inputs to the various
tools available. The Color Scale area controls the ranges used in displaying the data. There are five
schemes for setting the color scale that are chosen with the pop up menu.

Abs Min-Max: Absolute Minimum and Maximum: The upper limit is set to the
maximum value of the green Max line in the Overview window for
all of the frequencies. The lower limit is set to the minimum of the
Avg blue line in the Overview window for all the frequencies.

Rel Min-Max: Relative Minimum and Maximum: The upper limit is set to the
maximum scanned surface value for the currently displayed
frequency. The lower limit is set to the Avg value for the current
frequency.

32

Abs dB Range: Absolute Decibel Range: The upper limit is set to the maximum
value of the green Max line in the Overview window for all of the
frequencies. The lower limit is determined by subtracting the value in
the “Range” text box from the upper limit.

Rel dB Range: Relative Decibel Range: The upper limit is set to the maximum
scanned surface value for the currently displayed frequency. The
lower limit is determined by subtracting the value in the “Range”
text box from the upper limit.

Manual: The upper limit, lower limit, and range are all set manually by the
user.

The data can also be displayed using contour lines either superimposed on the color image or displayed
independently. Contour lines step from the lower limit to the upper limit as set by the color scale
options. The step value or the number of lines between these limits can be set from the Contours
section of the Imager window.

The lower left section of the Imager window is used for command specific information.

The menu choices for the Imager Module control the way the data is displayed and launch additional
tools. The File menu allows the user to load a file of points defining the shape of the model. These
points are superimposed on the data and displayed in a user selected color. The File menu also allows
the user to save the image as a postscript or encapsulated postscript file and to quit the Imager Module.

The View menu controls how the data is displayed in the Imager window. Image and Contours select
whether a color graduated pattern and/or contour lines are shown. Legend and Frequency select
whether a color scale and/or current frequency value are displayed in the data section of the window.
Orientation of the data is controlled through the Flip Image choices. With these choices, the flow
direction can be oriented as the researcher desires. Note that for the model projection and the data to
coincide they must both be in model coordinates and inches. The color and type of symbol used for the
model projection points are selected using the Model Color and Model Symbol menu choices.

Additional tools that can be used to examine or analyze the scan data in further detail are selected under
the Tools menu. The current choices under this menu are Profile and Source Integration. The Profile
command is used to view the amplitude values along a straight line drawn in the Image window. The
line is drawn by clicking the left button at the desired start point and dragging to the desired end point.
The starting and ending coordinates are displayed in the command specific area of the Image Window
as shown in figure 22 and can be altered here. The scan values along this line are shown in the Profiles
window (fig. 23). The x-axis is the delta grid point number from the start of the line to the end.
Different line styles, symbols, and grid configurations can be chosen from the menus in this window.
This feature is useful in viewing relative shapes and amplitudes of structures of a scan surface. The
profile window may be dismissed by choosing “close” under the window manager close function.

The Source Integration menu choice has three options: load points, define points, and load multiple
source points. The first option is to load in a file defining the source integration region with a fixed
region for all frequencies. This region can also be defined using the Define Points submenu. The user
uses the mouse to define a source integration region under this option. The Imager window for this

33

mode is shown in figure 24. The user defines the region by left clicking points on the Imager window
to draw a “box” around the area of interest. This box can have up to 99 vertices. Middle clicking stops
drawing points and connects the first and last points. The region thus defined may be saved to a file by
clicking the “Save Pts...” button in the lower left corner of the Imager window when in Source
Integration mode.

The method of defining an integration region contained in Mview is limited to a constant single region
that is the same for all frequencies. However, the integration code can have several frequency varying
regions defined for integration. These regions must be defined in an external code but can be viewed in
Mview by loading the definition file with the Load Multi Source Pts submenu. An example of this
feature active is shown in figure 25.

Individual Microphone Health Module
This module displays the status information of the microphones and blocks used in processing. Each
row corresponds to one microphone and each column corresponds to an FFT block as shown in
figure 26. Each rectangle is color coded to indicate whether the data is good (green) or bad (not green).
The color indicates which test was used to discard that block of data from processing. Note that if an
FFT block of data is flagged as bad, that block of data is excluded from processing for all
microphones. The exception to this is if several FFT blocks are flagged as bad for one microphone,
then that microphone is discarded and not that FFT data block. This can be seen in the next module,
Combined Microphone Health. Left clicking the mouse on a displayed rectangle will display the
Microphone and Block numbers currently under the pointer.

Combined Microphone Health Module
This module indicates which data are actually processed after the elimination of bad block columns and
bad microphone rows. This window, shown in figure 27, is an indication of which data blocks and
microphones were actually processed. While the Individual Microphone Health Module gives a good
indication of the health of individual microphones and blocks, the Combined Microphone Health
Module gives a good indication of the amount and quality of the overall data processed. Its format is
similar to that of the Individual Microphone Health Module.

Surf Module
The Surf Module (fig. 28) is activated by selecting the Surf option in the Overview Module’s View3D
menu. The Surf Module takes the scan surface and displays it as a three-dimensional elevation plot,
where elevation corresponds to decibel level. This feature is useful to understand the relative difference
between decibel peaks in the scan surface. A file of points defining a model can also be loaded in and
displayed beneath the surface plot. The color scale and contour options are the same as those of the
Imager Module. Two slider controls let the user rotate the surface plot around the viewing x- and
z-axes. Options in the View menu are the same as for the Imager Module except for the lack of flip
image choices, which are meaningless for this module.

34

Source Integration Module
The Source Integration Module is activated by selecting Source Integration from the Main Module’s
View menu. The Source Integration Module is used to display the results of source integrations. Up to
six integration files may be loaded at the same time. This allows the comparison of the integration
results from different conditions or, as shown in figure 29, the comparison of different integration
regions within the same condition. Moving the slider bar changes the frequency and displays the
decibel value of each data set at that frequency. The scale can be either set manually or determined
automatically. The two types of values which can be viewed are the source integration values and the
integration area maximum values. The source integration program is explained in a following section.

FILE FORMATS

Data longevity was considered in choosing file formats. Historically, data stored as raw binary streams
cannot be easily used after a time because of the inherently hidden nature of the data field formats.
Additionally, binary files written on one CPU operating system type and brand are not guaranteed to be
easily readable on other types of machines. This poses a problem as raw and processed data can “sit in
the can” for many years and then be required for research. During this time personnel and computer
systems may have changed significantly. Plain ASCII files can be used as an easily readable format.
However, text files are very large when dealing with the large data sets generated in array measurements
and are thus not acceptable for primary data storage. Careful consideration was given to this problem
and a universally accepted self-describing binary file format called Network Common Data Format
(netCDF) was chosen as the format for data storage. NetCDF was developed by University
Cooperation for Atmospheric Research under a National Science Foundation-sponsored program.
NetCDF data is stored in a self-describing, machine-independent data set that can be accessed from
many types of platforms. For more information on the netCDF format and supporting software drivers
please refer to the Unidata web site located at http://www.unidata.ucar/. The netCDF format allows
growth of the format for the data files to include parameters not considered in this version, as long as
the existing parameters are not changed to ensure backward compatibility. This is possible because
netCDF accesses the stored data by variable name, variable attributes, and index number independent of
their location in the file. Thus additions to the data files need only add different variable names or
attributes as long as the minimum required variables and attributes are present.

File Name Convention

The file naming convention for MAPPS files conforms to the DARWIN (ref. 3) standard convention
for the raw and processed data files. This allows integration of data into the DARWIN system for
easy access and integration of results with other test suites.

The file name format for the raw time history, processed, and supporting files is:

ttttttPMArrrrrpppfffffvv.eeee

35

where

tttttt Six digit test number with leading zero padding
PMA Literal indicating data from the PMAT system
rrrrr Five digit run number with leading zero padding
ppp Three digit sequence or point number with leading zero padding
fffff Five character alpha numeric file type descriptor:

procd -processed data from the MAPPS processing software, netCDF format
rawth -Digitized data, netCDF or binary format
sgout -Scan geometry file, netCDF format
cntrl -processing control setup file, ASCII text format

vv Two digit version number used in tracking.
eeee Variable length file type extension:

nc -netCDF format
bin -binary data
proj -model projection file (ASCII text)
txt -general ASCII text

All fields except the extension (eeee) must be present and of the prescribed length. They must be
fully populated by using leading zero padding.

Raw Time History Data File (tttttt PMArrrrrppp rawthvv.nc)

This file contains the digitized raw time history data in counts obtained from the acquisition system as
well as the wind tunnel parameter data. In addition, the data file includes tracking information for each
channel’s set of instrumentation. The tracking information includes the manufacturer, model number,
and serial number for each part of the channel’s instrumentation. This allows calibration information
for subassemblies to be applied as well as the ability to be able to recreate the test setup. The raw time
history data file also contains information describing all of the coordinate systems. The version number
(vv) used in this file’s header is the designator for the version of the raw data file.

A detailed explanation for each variable and field in the raw data netCDF formatted file is included in
Appendix 5.

Processed Data File (tttttt PMArrrrrppp procdvv.nc)

The processed results are stored in this binary netCDF formatted file. The processed information is
appended to the header information from the raw time history netCDF file with the dataar1 variable
time dimension set to 1. This gives full tracking of the processed results. The version number (vv) used
in this file is the processing version number. The tracking back to the specific raw data file is specified
in the global attributes section. All of the processing setup information is included in this file. See
Appendix 6 for a detailed explanation of the format of this file.

36

Control Settings File (ttttttPMArrrrrppp cntrlvv)

The settings file is used to store all the settings from the Process Control Interface and transfer them to
the processing software. The settings file is an ASCII file that is formatted as a Fortran namelist of
inputs. The variables contained in the settings file are explained in Appendix 6 under the procsettup
variable. The attributes of the procsettup variable match the fields contained in the settings file. An
example of the settings file is shown in Appendix 7.

Test Model Geometry File

This Plot3d format binary grid file describes the model used in the acoustic test. This file may be
single- or multi-zone, and should approximate the shape of the actual test model. By using this file as
input to ‘findprojection’, a file of points will be generated to overlay with the data set shown in Mview.

Projected Model File

This file is the output of the ‘findprojection’ program that contains the image of the model projected
onto the scanning surface. This file must be an ASCII file in column format, where the first column
contains the x-coordinate, the second column contains the y-coordinate, and the third column contains
the z-coordinate. The points in this file are in inches in the model coordinate system.

Level Integration Files

There are three ASCII files associated with level integration. The first is the area definition input file.
The first line of this file is the number of frequencies to be processed. The second line is a switch, with
‘1’ indicating that each frequency requested must have its own set of integration regions specified. The
frequency based area definitions follow, with one definition required for each frequency to be inte-
grated. The first line of the frequency based area definitions contains the frequency number (starting at
zero) and the frequency value in hertz. The next line has the number of integration areas for this
frequency followed by the number of vertices for each area. For example, the line containing “3 6 7 8”
would mean three integration areas having six, seven, and eight vertices, respectively. The x, y, and z
coordinates for each vertex follow with one vertex entered per line. In other words, for the example
given, there would be 21 vertex lines with the first 6 lines being for the first area, next 7 for the second
area, and last 8 for the third area. If no integration regions exist for a requested frequency then a ‘0’
can be entered for the number of integration regions.

If the switch in the second line is set to ‘0’ then the integration areas used for the first frequency will
be used for all frequencies. In this mode the first frequency definition area must contain a full area
definition. However, the rest of the frequency definition areas just contain one line each. That line
contains the frequency number and value to be processed.

The output from the level integration are two ASCII files that contain the integrated spectra. The first
file contains the integrated values for the frequencies requested from the area definition file. Also listed
for the frequencies requested are the maximum scan values contained in the defined integration regions.

37

Five metrics are listed in this file that combine the frequency values, one Overall Integrated Level and
four Perceived Noise Levels (PNL). The Overall Integrated Level is the power summed combination of
all the narrow band levels. The Perceived Noise Levels are generated using two methods, with model
and full scale values for each method. The first PNL method is the classic method that mimics the
analog filter roll off shapes in the combining of frequency bins. The implementation of this method is
based on code obtained from Lewis Research Center and is thus labeled the Lewis method. The second
method assumes rectangular shapes for the frequency combining bands that has the effect of no energy
loss from filter shaping. The second method is labeled the Energy Conservation method. The two
methods will give similar results for fully populated and narrow frequency resolution data. Each
method is also applied to the integrated spectra after converting the integrated narrow band data to full
scale using the model scale value contained in the processed netCDF file.

The second output file contains the third octave values for the narrow band spectrum resulting from the
source integration. This file contains the same metrics as the narrow band integration results file with
the addition of a tone corrected Perceived Noise Level for model and full scale. The number of narrow
band frequency bins contained in each one-third octave must be at least 10 or the third octave will be set
to zero.

Calibration Files Used by the Processing Program

Several calibration files are used by the processing code to obtain calibrated results. The process for
obtaining these files is complex and is shown in figure 30.

Calibration Sensitivity File
The Calibration Sensitivity file is an ASCII file that contains the Pascals per volt calibration for each
channel. Each line contains the conversion for one channel. Thus, if there are 100 channels, then there
are 100 lines of values. A ‘1.0’ should be entered for channels that do not contain microphones.

Instrumentation Calibration File
The Instrumentation Calibration File is a netCDF file that contains the information about each
instrument calibration and all the parameters that define the neural net model of each instrument. Neural
net models representing the average behavior of each instrumentation model may also be stored here.
The attributes for the variables “microphone”, “preamp”, “powersupply”, “wiring”, and “filter” in
the netCDF file describe the neural net models for each of these instruments and how the neural net
model parameters are stored. There is one variable for each piece of instrumentation and/or instru-
mentation model. For an individual instrument, the variable name encodes the type of instrument and its
serial number. For representative instrument models, the variable name encodes the type of instrument,
the fact that it is a representative model, and its model number. For example, the variable
“micsn1518106” is for the microphone with serial number 151806 and “micsnrepTMS140BF” is
for the representation of microphones with model number TMS140BF. The attributes for each
instrument or representative instrument variable contain information about that instrument, its
calibration, and the parameters of the neural net model. The Instrumentation Calibration File may be
combined with other calibration netCDF files.

38

Installation Calibration File
The Installation Calibration File is a netCDF file that contains information about the installation effect
at each microphone location in an array. The attributes for the variable “installation” contain a
description of the neural net model, instructions for evaluating the model, and descriptions of how the
parameters are stored in this file. There is one variable for each microphone location. The variable name
encodes the information that this is an installation calibration model and an index number for the
microphone location. For example, the variable “instalmic1” identifies this as an installation calibration
for location number 1. The number of the location has no intrinsic meaning, it is only the order of the
microphone in the Intermediate Speaker Array Transfer Function File. The attributes of the variable
store information about the array, the microphone location, and parameters needed to evaluate the neural
net model. The Installation Calibration File may be combined with other netCDF files for other types
of calibration; however, due to the naming conventions only one array installation model may be stored
in any one netCDF file.

Directivity Calibration File
The Directivity Calibration File is a netCDF file that contains information about the directivity
calibration of the array and the neural net model of the directivity correction. The attributes for the
variable “speaker” describe the neural net model, how to evaluate the model, and how the parameters
are stored in this file. There is one variable for each array. The variable name encodes the identification
of this as a directivity calibration and the name of the array. For example, the variable “dir710-01-100”
is for the directivity of array 710-01-100. The attributes of the variable store the name of the array, the
date the neural net model was computed, and all the parameters needed to evaluate the neural net model
of the directivity. The Directivity Calibration File may be combined with other netCDF files.

Intermediate Calibration Files

Some calibration files are not used by the processing code but are needed by various utility programs
for the calibration process and are described in this section.

Intermediate Instrumentation Calibration File
The transfer function information for instrumentation is stored in an ASCII file. The first 12 lines are
header information, the 13th and 14th lines are reserved for additional header information to be added
later, the 15th line lists the columns of data and the 16th line through the end of the file contain the data
in four columns. The four columns are frequency index (count), frequency in hertz, magnitude in
decibels, and phase in degrees. The example below shows the header for a microphone diaphragm
calibration. Since there was no institutional wiring or filter contained in this calibration, these fields are
marked with an X.

Diaphragm Calibration
Sunday, February 1, 1998
Pressure 14.7 psia

39

Input Signal: Sine Sweep
Temperature: 24.0 °C
Calibration frequency 247.3 Hz Level 144 dB Voltage 0.98 V
Institutional Wiring Channel X
Signal Conditioning 20 dB
Diaphragm SN 7188 brand GRAS model TMS140BF size 1/4"
Preamp SN 7311 brand GRAS model TMS126AC size 1/4"
Power Supply SN 7500.A brand GRAS model TMS112AA
Filter SN XXXXXXX brand XXXXXX model XXXXXX
blank line 1
blank line 2
COUNT HZ MAG PHASE
0.000000E+0 1.000000E+2 -4.272347E+1 -1.786992E+2
1.000000E+0 2.248750E+2 -4.272871E+1 -1.795871E+2
...

Intermediate Speaker Free-Field Transfer Function File
The speaker free-field transfer function file is in ASCII format and contains the transfer functions from
the reference channel to a free-field microphone. These free-field microphone measurements are made
at many locations to obtain the speaker characteristics over the region of the physical array micro-
phones. This file is produced by the program ‘spdefxferfun’ and is used in the MATLAB script
‘MakeInstalModel’. The first five rows contain header information; row 1 contains 1000*run number
+ point number, row 2 contains alpha in degrees, row 3 contains beta in degrees, row 4 contains radius
in inches, and row 5 contains temperature in degrees Fahrenheit. Starting with the sixth row, the first
column contains frequency in hertz and all the other columns contain the transfer function for each
measurement location. An example is shown below:

0 runpt runpt ...
0 alpha alpha ... (deg)
0 beta beta ... (deg)
0 rad rad ... (inches)
0 T T ... (deg F)
f TFun TFun ...
.
.

Intermediate Speaker Definition File
The Intermediate Speaker Definition File is a netCDF file that contains information about the
speaker and a neural net model of the speaker transfer function. The attributes for the variable
“speakerdefinition” contain a description of the neural net model, instructions for evaluating the model
and descriptions of how the parameters are stored in this file. There is one variable for the speaker. The
variable name encodes the information that this is a speaker definition model and a name of the
speaker. For example, the variable “speaker SJ1” identifies this as a speaker definition for the speaker

40

SJ1. The attributes of the variable store information about the speaker and parameters needed to
evaluate the neural net model.

Intermediate Speaker Array Transfer Function File
The speaker array transfer function file is an ASCII format file that contains transfer functions from
the reference channel to the individual array microphones. This file is produced by the program
‘sparrayxferfun’ and is the input into the MATLAB script ‘MakeInstalModel’. The first ten rows
contain header information: the first three rows contain the x, y, and z coordinates of the microphones
in the array coordinate system in inches; rows 4 through 6 contain the radius, theta, and phi values for
the microphones in the speaker spherical coordinate system; row 7 contains the FFT block size; row 8
contains the number of FFT blocks averaged; and row 9 contains the temperature in degrees Fahren-
heit. The tenth row contains the xducertype indicator from the raw data file. If this type is set to ‘1’
then it is an array microphone. Starting with the eleventh row, the first column contains the frequency in
hertz and all the other columns contain the transfer function. An example is shown below:

0 x x ... (inches)
0 y y ... (inches)
0 z z ... (inches)
0 rad rad ... (inches)
0 theta theta ... (degrees)
0 phi phi ... (degrees)
0 bs bs ...
0 nb nb ...
0 T T ... (deg F)
0 1 4 ... (xducertype)
f TFun TFun ...
.
.

Intermediate Directivity Calibration Files
The intermediate directivity calibration files are ASCII format files that contain spectra from all of the
scans made for the directivity calibration. These files are produced by the program ‘dirprennet’ and
used in the MATLAB script ‘MakeDirFile’. One file contains the amplitude spectra of the maximum
scan value, one file contains the amplitude spectra of the average of all the good microphones, and one
file contains the amplitude spectra of the reference signal. In each file, the first five rows contain header
information: row 1 contains the run point designator calculated using 1000*run number + point
number, row 2 contains the angle alpha in degrees, row 3 contains the angle beta in degrees, row 4
contains the radius in inches, and row 5 contains the temperature in degrees Fahrenheit. Starting with
the sixth row, the first column contains frequency in hertz and all the other columns contain amplitude
spectra in decibels. An example is shown below:

0 runpt runpt ...
0 alpha alpha ... (deg)
0 beta beta ... (deg)

41

0 rad rad ... (inches)
0 T T ... (deg F)
f Amp Amp ... (dB)
.
.

UTILITY PROGRAMS

While the basis of MAPPS is the three main elements consisting of processing control interface,
parallel processing software, and visualization software, there are several codes that perform supporting
tasks. These supporting codes perform such functions as finding the model projection, performing
source integration, determining calibration curve fits, and converting formats.

Find Model Projection

An accurate depiction of the model component locations with respect to the scanning surface is
required to understand the source locations. Because the scan surface can be an arbitrary surface in
space and may be far from the model components, it is insufficient to simply overlay the model and
scan surface. What is seen by the array is equivalent to placing an arbitrary screen between your eyes
and something in space. What you see on the screen is the intersection of rays from that object to your
eyes. Thus the model component points must be projected onto the arbitrary scan surface to get an
accurate depiction of source locations. This concept is illustrated in figure 31. The C program
‘findprojection’ was written to perform this function. It takes as input the scan surface geometry and
microphone array locations contained in the processed netCDF file and the model geometry file. The
output is a file containing the projected points, which is loaded into Mview and overlaid onto the scan
results. The input model geometry and the scan surface are in inches in the model coordinate system
and the microphone array is in inches in the wind tunnel coordinate system. The model geometry and
scan points are converted to wind tunnel coordinate system internally and then back to model
coordinate system upon output of the projected points. It is essential that the model geometry points
must be in the model coordinate system and the rotation matrix and translation vector from model to
wind tunnel coordinate systems must be correct in the netCDF file.

Source Level Integration

Array processing yields the correct result in the ideal case of scanning through one point source in an
infinite domain. The array response from scanning the point source gives the squared acoustic pressure
at the center of the array due to that ideal source. If the source is a distributed source, or multiple
sources (including reflections), the array response may not give a good measure of the total acoustic
pressure. If sources are widely separated, each source should produce little effect on the array response
of the others. When sources are close to each other, the array response for one will be affected by the
other and they may even appear as merged.

42

Robert Dougherty (personal communication, The Boeing Company, October 17,1995) suggested a
method to evaluate the effect of multiple or distributed sources within an area from the array response
map. A region is defined in the scan area. The integral of the array response over that region is
computed and referenced to the integral over the same region of the array response to an ideal point
source. This new metric relates the source strength to the integral of the array response instead of the
maximum of the array response. This ratio is then applied to the maximum source value in the
integration area. The C routine ‘levelint’ was developed which implements this scheme.

‘Levelint’ can integrate multiple areas that are different for each frequency. The final integrated value is
obtained by adding the results of the individual area integration at each frequency. ‘Levelint’ takes as
input an ASCII file that defines the integration areas as a function of frequency. The inputs are:

1st line: processed netCDF data file location including full path
2nd line: ASCII input file which contains the area definitions including full path
3rd line: ASCII output file name including full path
4th line: comment line to include in output file
5th line: delta dB down from maximum in the integration area to include in integration
6th line: conversion factor to convert units contained in processed netCDF data file to meters
7th line: switch to output third octave file (0 for no, 1 for yes)
8th line: switch to process more cases (0 for no, 1 for yes)

If the switch for third octave output file is turned on, then a file with the same name as that in the 3rd
line will be output but with a “to” appended. If the switch for more cases is set to one then lines 1
through 8 are repeated until the switch is set to zero, at which point the program will exit.

Processed NetCDF to Plot 3D Conversion

The scan surface geometry and data values are stored in the netCDF file in variables that relate directly
to Plot3d format. This format makes it easy to extract the data sets and read them into the Flow
Analysis Software Toolkit (FAST).

‘Netfast’ is a utility which extracts the sgout scan surface and function file data from a netCDF data
set, and writes binary Plot3d scan surface and function files. Note that the grid file output by ‘netfast’
is one layer of the actual scan surface and must be expanded to have one layer for each frequency
contained in the function file. To do this, run the utility ‘grexpand’.

Expanded Grid File Generation for FAST

The ‘grexpand’ routine reads a single plane of scan grid data and duplicates the grid for each
frequency for use in the FAST visualization environment. The number of frequencies is read from the
scan pressure function file generated by ‘netfast’.

Usage: grexpand gridfile pressurefile output_filename

43

The gridfile must be a binary plot3d single zone grid file. The pressurefile must be a binary plot3d
function file.

Model Coordinate Alignment

The C program ‘movit’ allows the user to apply certain translations and rotations to a model in order to
align it to the proper model coordinate system. This program reads in an object from a Plot3d ASCII
grid file, applies FAST translation/rotations as entered by the user, and then outputs the object to a
Plot3d ASCII grid file. The transformations are modeled after the Transform Typeins dialog in FAST.

Calibration Generation Utilities

There are several steps required to generate the four calibration files required for fully calibrated array
results. The chart shown in figure 30 shows the steps required and each program or script is described
below.

Speaker Free-Field Definition Transfer Function Generation

The C program ‘spdefxferfun’ generates the transfer function between the free-field microphone and
the calibration source signal for all the locations in the free-field measurement matrix. The program
first calculates the offset between the calibration and free-field signals via cross correlation to account
for the retarded time. The cross spectrum is then calculated between the reference microphone and
calibration signal using this offset. The cross spectrum of the microphone and calibration signal and
the auto spectrum of the calibration signals are averaged and then the transfer function is calculated.
The equation is:

T
F F

F F
microphone calibration

calibration calibration
=

⋅ ′
⋅ ′

(35)

All electrostatic, sensitivity, and free-field calibrations are applied to the signals after the FFT is
calculated and before the correlations are calculated. The results of these calculations are written to a
file which contains the transfer functions for all free-field definition locations. This file is then fed into
the MATLAB script ‘MakeSpeakModel’ to generate the free-field definition neural net curve fit.

Speaker Array Transfer Function Generation

The C program ‘sparrayxferfun’ generates the transfer function between the array microphones and
the calibration source signal for all the microphones in the array at a reference location. The program
first calculates the offset between the calibration and each microphone signal. The cross spectrum is
then calculated between the array microphone and calibration signal using this offset. The cross
spectrum of the microphone and calibration signal and the auto spectrum of the calibration signals are

44

averaged over the requested number of averages and then the transfer function is calculated. The
equation is:

T
F F

F F

microphone array

array array

=
⋅ ′

⋅ ′
(36)

All electrostatic and sensitivity calibrations are applied to the signals after the FFT is calculated and
before the correlations are calculated. The results of these calculations are written to a file which
contains the transfer functions for all array microphones. This file is then fed into the MATLAB script
‘MakeInstalModel’ to generate the installation effects neural net curve fit.

Intermediate Directivity Calibration File Generation

The C program ‘dirprennet’ accumulates directivity information from processed data files and outputs
them as tables. Three tables as ASCII files are output: one each for the scan maximum value, scan
average value, and the average spectra of all microphones. These files are used by the MATLAB script
‘MakeDirModel’.

Daily Sensitivity Generation

The ‘dailysensitivity’ program calculates a transfer function metric for a reference and a daily speaker
measurement. The ratio of these two metrics is used to modify a reference sensitivity file. The metric
for each measurement is calculated by first applying the proper gains and electrostatic calibrations. The
transfer function between each array microphone and a reference source is then calculated using the
same method as the ‘sparrayxferfun’ program. The transfer functions are then power averaged over a
user-defined frequency range as well as a user-defined subset of array microphones. The reference
sensitivities for all array channels are then multiplied by the ratio of the reference metric to the daily
measurement metric to give the corrected sensitivity file to be used by the parallel processing code.

Instrumentation Neural Net Curve Fit

Microphone Diaphragm Curve Fit
The MATLAB script ‘MakeMicModel’ will make neural net models of the amplitude and phase
response for the microphone power supply, preamplifier, diaphragm, filter, and wiring. For the
calibration of instrumentation connected in a series, the order of neural net modeling is important.
During the neural net model generation process, consideration is given to all instruments listed in
Intermediate Instrumentation Calibration File. Exactly one piece of instrumentation will be identified
with each neural net model. If any other instrumentation are listed in the file, the program will attempt to
remove the effect of the other instrument(s). The effect of the other instrument(s) will be removed if a
neural net model exists in the identified netCDF Instrumentation Calibration File of that instrument or
that instrument model. This feature allows mixing instrumentation without losing calibration. On the

45

other hand, if the user does not want to calibrate each instrument separately, the series can be calibrated
as a whole and identified with the microphone diaphragm serial number.

The transfer function of the microphone diaphragm may be modeled as a function of wave number at
atmospheric pressure or as a function of wave number and pressure. For a microphone diaphragm, the
Individual Instrumentation Calibration File for that diaphragm will contain a calibration at only one
pressure. Multiple files are used when the model includes pressure. When multiple files are used,
neural net models may also be made of the delta pressure amplitude and phase. The delta pressure is
measured from the pressure in the first file:

∆ P P Pn= − 1 (37)

∆∠ = ∠ − ∠P P Pn 1 (38)

For all other instruments, the neural net model is made as a function of frequency. The example below
shows the program inputs needed to make amplitude and phase models of the diaphragm stored in the
intermediate file “/usr/people/mosher/ARRAY/PRESSCAL/CALRESULTS/DATA/D1” and store the
results in the file “/usr/people/mosher/ARRAY/temp3.nc”. The final slash, “/”, must be included
when entering the name of any directory. The user inputs are in Courier and the program prompts are
in bold Courier font. Enter MATLAB by typing matlab at the UNIX prompt; the prompt inside
MATLAB
is >>.

>> MakeMicModel
Input directory name in quotes for NetCDF (default:
/usr/people/mosher/ARRAY/PRESSCAL/)
Input file name in quotes for NetCDF (default: temp.nc) ‘temp3.nc’
Use 1 file to model a single diaphragm at atmospheric pressure.
Use multiple files to model the delta pressure from the first file.
Use 1 file to model any other instrument.
Input number of files to read (default: 1) 1
Input file name ‘/usr/people/mosher/ARRAY/PRESSCAL/CALRESULTS/DATA/D1’

Select the instrument.

Enter 1 for Power Supply
Enter 2 for Preamp
Enter 3 for Diaphragm 3

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist
> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 55
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist

46

> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 77
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist
> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 118
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist
> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 55
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist
> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 77
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308

Warning: file /usr/people/mosher/ARRAY/PRESSCAL/temp3.nc does not exist
> In /usr/people/mosher/ARRAY/PRESSCAL/ReadMicModel.m at line 173
 In /usr/people/mosher/ARRAY/PRESSCAL/CorrectData.m at line 118
 In /usr/people/mosher/ARRAY/PRESSCAL/MakeMicModel.m at line 308
Enter a lower frequency if you want the maximum lower than 100000 50000
Enter yes in quotes if you want to model absolute amplitude ‘yes’
Enter yes in quotes if you want to model absolute phase ‘yes’
Input number of neurons in layer 1 (default: 10) 9
Input normalized rms goal (default: 0.0075) .01
Input maximum number of epochs to train (default: 30.0000)
TRAINLM: 0/30 epochs, mu = 0.01, SSE = 9978.77.
TRAINLM: 3/30 epochs, mu = 0.01, SSE = 1.08375.

cc =

 1.0000 0.9998
 0.9998 1.0000

TRAINLM: 0/30 epochs, mu = 0.01, SSE = 2.0893e+07.
TRAINLM: 5/30 epochs, mu = 1, SSE = 641.358.
TRAINLM: 6/30 epochs, mu = 1, SSE = 295.389.

cc =

 1.0000 0.9989
 0.9989 1.0000

47

TRAINLM: 0/60 epochs, mu = 0.01, SSE = 2.08509e+07.
TRAINLM: 5/60 epochs, mu = 1, SSE = 449.264.
TRAINLM: 6/60 epochs, mu = 1, SSE = 130.8.

cc =

 1.0000 0.9996
 0.9996 1.0000

>>

The default values for the number of neurons, rms goal, and number of epochs usually work very well.
The script will make three attempts to generate a good curve fit. The curve fit for modeling a diaphragm
at atmospheric pressure is considered good if the maximum error in amplitude is within 0.15 dB and
the maximum error in phase is within 3 degrees. The curve fit for modeling a diaphragm with delta
pressure is considered good if the maximum error in amplitude is within 0.5 dB and the maximum
error in phase is within 3 degrees. A good curve fit will not be produced if there is a resonance in the
response of the instrumentation within the wave number range of interest. Instrumentation with
resonances in this range should not be used in the array. The warning messages occur in this example
because no netCDF file was found when the program tried to read neural net models of the power
supply and preamplifier. If you want all of the instruments in the series calibrated as a whole, then the
warning messages will be given and can be ignored. If you want each instrument calibrated separately,
the warning messages will alert you that something is amiss. You can determine the status of all the
instruments by reading the resulting netCDF file with the utility program ‘ncdump’.

The neural net curve fits for instrumentation may be run in batch mode. To run multiple cases in batch
mode, make an input file for each microphone that looks like the following file, D46.inp:

pause(1);
MakeMicModel
‘/usr/people/mosher/ARRAY/PRESSCAL/’ % NetCDF directory
‘calibration19980421.nc’ % NetCDF file
1 % number of pressures
‘/m3d4/soderman/bodata/results/D46’ % input file
3 % instrument
100000 % maximum frequency
‘yes’ % absolute amplitude
‘yes’ % absolute phase
 % number of neurons
 % normalized rms goal
 % maximum # epochs
 %(need 3 blank lines after this for batch)

48

The pause at the top and the three blank lines at the end of the file are needed for the program to run
correctly. This input file starts the program and provides all the input to the program. To run in batch,
write and run an executable script to run MATLAB with the input files and output files as shown
below:

matlab < /directory/D1.inp > /directory/D1.out
...
matlab < /directory/D100.inp > /directory/D100.out

Viewing Microphone Diaphragm Curve Fit
The MATLAB script ‘SummarizeCalQuality’ will read the instrumentation calibration netCDF file,
“file.nc”, and generate a table showing the results. The resulting table is output as the file
“file.nc.quality”. Any curve fit that did not pass the quality check for maximum error should be
examined. The MATLAB script ‘PlotMicModel’ will plot both the data and neural net curve fit for a
power supply, preamplifier, microphone diaphragm, filter, or wiring. Determination to exclude a poor
quality instrument can be made after examining this plot.

Representative Microphone Curve Fit
The MATLAB script ‘MakeRepMicModel’ will make neural net models of the representative
amplitude and phase responses of the microphone power supply, preamplifier, diaphragm, filter, and
wiring. This representative model is based on the responses of all of the specific instruments in the
instrumentation calibration files. Each input file is for one specific instrument. Treatment of the data is
essentially the same as it is in making models of individual instruments, except the representative model
will approximate the average behavior for all the specific instruments. The example below shows the
inputs to make a representative model of power supplies. Two power supplies were used.

>> MakeRepMicModel
Input directory name in quotes for NetCDF (default:
/usr/people/mosher/ARRAY/PRESSCAL/)
Input file name in quotes for NetCDF (default: temp.nc) ‘temp3.nc’
Input number of files to read (default: 1) 2
Input file name ‘/usr/people/mosher/ARRAY/PRESSCAL/CALRESULTS/DATA/PS1b’
Input file name ‘/usr/people/mosher/ARRAY/PRESSCAL/CALRESULTS/DATA/PS41’

Select the instrument.

Enter 1 for Power Supply 1
Enter a lower frequency if you want the maximum lower than 100000
Enter yes in quotes if you want to model absolute amplitude ‘yes’
Enter yes in quotes if you want to model absolute phase ‘yes’
Input number of neurons in layer 1 (default: 10)
Input normalized rms goal (default: 0.0200)

49

Input maximum number of epochs to train (default: 30.0000)
TRAINLM: 0/30 epochs, mu = 0.01, SSE = 2958.09.
.
.
TRAINLM: 30/30 epochs, mu = 1e-05, SSE = 0.263802.

TRAINLM: Network error did not reach the error goal.
 Further training may be necessary, or try different
 initial weights and biases and/or more hidden neurons.

cc =

 1.0000 0.7830
 0.7830 1.0000

TRAINLM: 0/30 epochs, mu = 0.01, SSE = 37701.7.
TRAINLM: 5/30 epochs, mu = 1, SSE = 40.1887.
TRAINLM: 6/30 epochs, mu = 1, SSE = 15.4508.

cc =

 1.0000 0.9995
 0.9995 1.0000

>>

In this example, the amplitude curve fit did not converge and the phase curve fit did converge. The
resulting plots must be examined to determine if the curve fits are adequate. In this example the lack of
convergence is due to scatter in the amplitude response of the power supplies. The script will generate a
plot showing the model and all the data to generate the model. This plot will be saved as a postscript file
in the directory identified for the netCDF file. The name of the postscript file will include the name of
the netCDF file, type of instrument, and type of model, so it should be readily identifiable.

Speaker Model Neural Net Curve Fit

The MATLAB script ‘MakeSpeakModel’ will make a neural net model of the transfer function of the
speaker. Start the curve fit program by typing ‘MakeSpeakModel’ inside MATLAB after running the
C program ‘spdefxferfun’. The program has default values for all input parameters that may be
changed when the program prompts for input. The frequency range should include only those frequen-
cies where measurements have a good signal to noise ratio and where installation effect will be needed
for noise measurements. The reference location is an item strictly internal to the speaker definition and
does not need to match other reference locations used in other aspects of calibration. The reference
location should be a location where you know there is a good transfer function measurement. The

50

script will select the data point closest to the reference location entered. The first set of default values
for the number of neurons, error level, and number of epochs is generally good. These are used to
develop a neural net model of the transfer function at the reference location. In the middle of the script,
the option is provided to view the transfer functions before selecting the parameters for the main
function fitting. Plots will be shown until a frequency of “0” is entered. For data that is nearly
axisymetric, enter “2” for the dimension of the function. Most other data requires three dimensions to
produce a good curve fit. The next set of parameters for the number of neurons, error level, and number
of epochs are suggested starting values. Experience in curve fitting will be needed to select good values.
It is best to use as few neurons as possible. If too many neurons are used, overfitting will occur and
generate large deviations in the curve fit between data points in the training set. It is best to use one
training set with all of the data. Options to train the neural net on subsets of data are provided for cases
when the computer is too small for the entire data set. It is recommended that the script to make a
speaker model only be run interactively.

>> MakeSpeakModel
Input speaker name in quotes (default: SJ1) ‘SJ1’
Input directory name in quotes for speaker transfer function (default:
/usr/people/mosher/ARRAY/SPEAKCAL/EXAMP/SPEAKDEFXFER/)
‘/usr/people/mosher/ARRAY/SPEAKCAL/EXAMP/SPEAKDEFXFER/’
Input file name in quotes for speaker transfer function (default: Tmatrix512) ‘Tmatrix512.v3’
Input directory name in quotes for NetCDF (default:
/usr/people/mosher/ARRAY/SPEAKCAL/) ‘/usr/people/mosher/ARRAY/SPEAKCAL/’
Input file name in quotes for NetCDF (default: temp.nc) ‘temp9.nc’
Minimum frequency = 0 , maximum frequency = 64800
Enter minimum frequency; 2000
Enter maximum frequency: 20000
The default reference location is at alpha = 0 and beta = 0
Input value for alpha (default: 0) 0
Input value for beta (default: 0) 5
Input number of neurons in layer 1 (default: 15) 20
Input normalized rms goal (default: 0.025) .02
Input maximum number of epochs to train (default: 50.0000)50

TRAINLM: 0/50 epochs, mu = 0.001, SSE = 441114.
.
.
.
TRAINLM: 46/50 epochs, mu = 0.0001, SSE = 0.710855.

cc =

 1.0000 0.9972
 0.9972 1.0000

The minimum frequency is 2000 the maximum frequency is 20000

51

Enter the frequency you want plotted (default: 1000 , enter 0 to halt) 0
Input number of independent variables (default: 3)
Enter 1 for wave number only
Enter 2 for wave number and theta
Enter 3 for wave number, theta and phi 3
Input number of neurons in layer 1 (default: 15) 12
Input normalized rms goal (default: 0.0350) .05
Input maximum number of epochs to train (default: 200.0000) 100
There are 16744 data points available for training
Maximum number of training sets is 6
Input # of training sets (default: 1) 1
Input number of points in training set (default: 16744)
TRAINLM: 0/100 epochs, mu = 0.1, SSE = 17874.6.
.
.
.
TRAINLM: 100/100 epochs, mu = 0.1, SSE = 411.221.
TRAINLM: Network error did not reach the error goal.
 Further training may be necessary, or try different
 initial weights and biases and/or more hidden neurons.

The minimum frequency is 2000 the maximum frequency is 20000
Enter the frequency you want plotted (default: 1000 , enter 0 to halt)2000
Enter the frequency you want plotted (default: 1000 , enter 0 to halt)0

The resulting curve fit should always be viewed to determine if the resultant speaker model is
acceptable. Convergence is not a good measure of the goodness of the curve fit. The convergence
criteria are a program parameter that may easily be changed by changing the rms goal. One rms goal is
not good for all data. If the data contains large scatter, a larger rms goal is appropriate. If the data is
very smooth, a smaller rms goal is appropriate.

Installation Neural Net Curve Fit

The MATLAB script ‘MakeInstalModel’ will make a neural net model of the installation effect for
each microphone location. The installation effect measures the difference between measurements made
with the array microphones and with a well calibrated isolated microphone. Start the curve fit program
by typing ‘MakeInstalModel’ inside MATLAB after running the MATLAB script
‘MakeSpeakModel’ and the C program ‘sparrayxferfun’. The program has default values for all input
parameters that may be changed when the program prompts for input. The frequency range is
determined by the frequency ranges in the files containing the array measurement and the speaker
model. The default values for the number of neurons, error level and number of epochs are generally
good. The script will attempt to make a curve fit up to three times. The fit is considered good if the
maximum error is less than 0.3 dB. The curve fit may be good enough even if these criteria are not met.
One curve is generated for each microphone location. The script saves the plot showing each curve fit
in a postscript file for later reference.

52

>> MakeInstalModel
Input speaker name in quotes (default: SJ1) ‘SJ1’
Input directory name in quotes for speaker model (default:
/usr/people/mosher/ARRAY/SPEAKCAL/) ‘/usr/people/mosher/ARRAY/SPEAKCAL/’
Input file name in quotes for speaker model (default: temp.nc) ‘temp2.nc’
Input array name in quotes (default: 710-01-100) ‘710-01-100’
Input directory name in quotes for array transfer function (default:
/usr/people/mosher/ARRAY/INSTALCAL/EXAMP/)
‘/usr/people/mosher/ARRAY/INSTALCAL/EXAMP/’
Input file name in quotes for array transfer function (default: Toutest) ‘Toutest’
Input directory name in quotes for output netCDF file (default:
/usr/people/mosher/ARRAY/INSTALCAL/EXAMP/)
‘/usr/people/mosher/ARRAY/INSTALCAL/’
Input file name in quotes for output netCDF file (default: testinstal.nc) ‘temp2.nc’
Input number of neurons (default: 22) 22
Input normalized rms goal (default: 0.0200) .02
Input maximum number of epochs to train (default: 50.0000) 50

TRAINLM: 0/100 epochs, mu = 0.001, SSE = 15844.3.
.
.
.
TRAINLM: 100/100 epochs, mu = 0.1, SSE = 5.45016.

TRAINLM: Network error did not reach the error goal.
 Further training may be necessary, or try different
 initial weights and biases and/or more hidden neurons.

cc =

 1.0000 0.9933
 0.9933 1.0000

TRAINLM: 0/100 epochs, mu = 0.001, SSE = 18504.7.
.
.
.
TRAINLM: 100/100 epochs, mu = 0.01, SSE = 8.18653.

TRAINLM: Network error did not reach the error goal.
 Further training may be necessary, or try different
 initial weights and biases and/or more hidden neurons.

53

cc =

 1.0000 0.9905
 0.9905 1.0000

Directivity Neural Net Curve Fit

The MATLAB script ‘MakeDirModel’ will make a neural net model of the directivity response of the
array. The example below shows how to run the program. Start the curve fit program by typing
‘MakeDirModel’ inside MATLAB after running the C program ‘dirprennet’. The program has default
values for all input parameters that may be changed when the program prompts for input. In the
example below, some parameters were left unchanged and some were changed to show how the
program works. Data can be viewed before curve fitting by entering a frequency to view. Data viewing
stops when a frequency of ‘0’ is entered. This example converged in 38 epochs. After generating the
curve fit, the data and curve fit were viewed at one frequency. The program was halted when a response
of ‘0’ was entered for viewing frequency.

>> MakeDirModel
Input directory name in quotes for data files (default:
/usr/people/mosher/ARRAY/DIRECTIVITY/)
Input directory name in quotes for NetCDF (default:
/usr/people/mosher/ARRAY/DIRECTIVITY/) ‘/usr/people/mosher/ARRAY/’
Input file name in quotes for average data file (default: diravg710_01_100) ‘diravg’
Input file name in quotes for maximum scan data file (default: dirmax710_01_100) ‘dirmax’
Input file name in quotes for reference channel file (default: dirref710_01_100) ‘dirref’
Input file name in quotes for NetCDF file (default: temp2.nc) ‘fileout.nc’
The default reference location is at alpha = 0 and beta = 0
Input value for alpha (default: 0)
Input value for beta (default: 0)
The minimum frequency is 500 the maximum frequency is 20000
Enter the frequency you want plotted (default: 1000 , enter 0 to halt)0
Enter minimum frequency for processing (default 500);
Enter maximum frequency for processing (default 20000); 5000
There are 3420 data points available for training
Maximum number of training sets is 6
Input # of training sets (default: 1) 1
Input number of points in training set (default: 3420)
Enter number of independent variables (2 or 3) (default: 3)
Input number of neurons in layer 1 (default: 15)7
Input normalized rms goal (default: 0.0100).002
Input maximum number of epochs to train (default: 100.0000)
TRAINLM: 0/100 epochs, mu = 0.001, SSE = 61726.8.

54

cc =

 1.0000 1.0000
 1.0000 1.0000

The minimum frequency is 500 the maximum frequency is 20000
Enter the frequency you want plotted (default: 1000 , enter 0 to halt)500
The minimum frequency is 500 the maximum frequency is 20000
Enter the frequency you want plotted (default: 500 , enter 0 to halt)0
>>

An option is available to divide the training set into multiple smaller training sets. Generally, it is better
to have fewer and larger training sets. However, it is possible to have more data in a training set than the
computer can handle. Thus, the number of values in a training set should be tailored to the amount of
available memory. Selecting the number of variables, the number of neurons, the convergence criteria,
and the number of epochs will take some trials to find good values. You may curve fit to two
independent variables, wave number and theta, or three independent variables including phi. The default
values for number of neurons, rms goal, and number of epochs are based on experience with a specific
data set and may not be appropriate for other data sets. It is best to use the fewest number of neurons
that will give a good curve fit. Looking at the data and experience making curve fits are the best guides
to selecting the number of neurons to produce a good curve fit. The rms goal may need to be increased
for data with a large amount of scatter or decreased for very smooth data.

It is recommended that the script to make the neural net curve fit for the array directivity always be run
interactively.

REFERENCES

1. Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; and Elson, Patricia: PLOT3D User’s Manual.
NASA TM-101067, March 1990.

2. Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.; Manchek, R.; and Sunderam, V.: PVM 3 User’s
Guide and Reference Manual. Engineering Physics and Mathematics Division, Mathematical
Sciences Section, prepared by the Oak Ridge National Laboratory, Oak Ridge, TN 37831,
ORNL/TM-12187, May 1994.

3. Koga, D. J.; Korsmeyer, D. J.; and Schreiner, J. A.: DARWIN Information System of NASA—
An Introduction. AIAA-96-2249, 19th AIAA Advanced Measurement and Ground Testing
Technology Conference, New Orleans, LA, June 17–20, 1996.

55

APPENDIX 1. MAPPS PROCESSING SOFTWARE CONTROL PROGRAM FLOW MAP.

mapps_con

pvmfmytid

mytid≤0 goto 990

nmlinput

istat≠0

hosts

info<0
istat≠0

info<0

iprocess≤5

goto 980

A (mapps_con)

yes

pvmfaddhost
pvmfspawn
pvmfconfig
pvmftasks

pvmfinitsend
pvmfpack
pvmfsend
(input 1)

yes

no

no

no yes

no yes

yes

control
input data

56

gensp genpl

proc_geom?

iprocess<0

xferout

no

spherical plane_wave

rosetta

pvmfinitsend
pvmfpack
pvmfsend
(lead 1 & 2)

goto 980

else

istat≠0 goto 980yes

info<0

iprocess<0 goto 990yes

A (mapps_con)

no

yes

B (mapps_con)

no

Appendix 1. MAPPS Processing Software Control Program Flow Map (Continued).

no

yes

57

print MAPPS program version number
Successful completion of control program
Parallel processes running on background

istat≠0

nmlsend
pvmfinitsend
pvmfpack
pvmfsend
(lead 4)

info<0

iprocess≤5
pvmfrecv
pvmfunpack
(input 2)

info<0

pvmfinitsend
pvmfpack
pvmfsend
(input 3)

info<0

goto 980

yes

no

B (mapps_con)

no

C (mapps_con)

no

yes

yes

yes

no

no

yes

Appendix 1. MAPPS Processing Software Control Program Flow Map (Continued).

58

interactive

pvmfrecv
pvmfunpack
(input 2)

pvmfunpack
(input 2)

yes

info<0

istat>0

no

errmsg 'in DoIt.'

print FATAL ERROR in leader processor

yes

yes

print nmics_good, nblks_good
open file_log_f file, write errors,

close file

info<0 goto 980yes

no

print Successful completion of parallel processes.
Output process running on background

goto 990 no

C (mapps_con)

D (mapps_con)

yes

no

no

Appendix 1. MAPPS Processing Software Control Program Flow Map (Continued).

59

pvmfrecv
pvmfunpack
(output 19)

print Successful completion of ouput process.

info<0 goto 980yesno

goto 990

980 print FATAL ERROR errmsg

990

cleanup

pvmfexit

D (mapps_con)

stop
end

Appendix 1. MAPPS Processing Software Control Program Flow Map (Concluded).

60

APPENDIX 2. MAPPS INPUT PROGRAM FLOW CHART.

mapps_inputc

pvmfmytid
pvmfparent

pvmfrecv
pvmfunpack
(control 1)

eliminate extra spaces in strings

data_source

A (mapps_input)
netcdf

netcdf

A (mapps_input)
boeing

boeing

61

getmem

iptr=0

get_nc_file

A (mapps_input)
netcdf

B (mapps_input)
netcdf

no

yes

nf_open

rcode≠0

nf_inq_dimid
nf_inq_dim
nf_inq_varid

nf_get_att_real
nf_get_att_int

'channelsar1', 'time', 'dataar1',
...

sleeper

ig>12 no

ig=0

netcdf
input file

yes

yes

goto 980

no

Appendix 2. MAPPS Input Program Flow Chart (Continued).

62

channelsar1<nchan, or
dblocksperch<ngroup, or
samplesperdblock<isize

rcodeπ0

B (mapps_input)
netcdf

C (mapps_input)
netcdf

istat≠0

read_nc_swts

nf_inq_varid
nf_get_var1_real
nf_get_var1_int

read_nc_xyz

no

nf_inq_varid
nf_get_var_real
nf_get_att_real

nf_get_var1_real

yes

no

rcode≠0 yes

diaphragm, preamp,
power, filter, wire,

delta_pres
yesno

no

goto 980

yes

Appendix 2. MAPPS Input Program Flow Chart (Continued).

63

C (mapps_input)
netcdf

get_att

nf_inq_attlen
nf_get_att_text
nf_get_att_real

nf_get_var1_real

rcode≠0

istat≠0

no

yes

iprocess<0

data_write

istatπ0

data_write

yes

no

yes

goto 990

no

D (mapps_input)
netcdf

goto 980

yes

Appendix 2. MAPPS Input Program Flow Chart (Continued).

64

E (mapps_input)
netcdf

sensitivity_file

get_nc_cal

get_nncor

instrumentation
calibration

instr_cal_file

yes

freefield_cal

istatπ0

directivity

get_nc_directivity

istatπ0

no

on

on

directivity_file

off

off

goto 980

D (mapps_input)
netcdf

cal_type basic

no

yes

yes

get_sensitivity

get_freefield

get_nc_installationinstallation_gain_file

installation_gain_
type

from_file

no

Appendix 2. MAPPS Input Program Flow Chart (Continued).

65

pvmfinitsend
pvmfpack
pvmfsend
(control 2)

pvmfrecv
pvmfunpack
(control 3)

send_nc_data

pvmfinitsend
pvmfpack

istat≠0

E (mapps_input)
netcdf

pvmfpack
pvmfsend
(control 5)
pvmfinitsend
pvmfpack
pvmfsend
(control 6)

send_time_data

get_nc
raw_time
netcdf file

data_tmp
netcdf file

istat≠0

goto 980

goto 990

yes

no

no

yes

Appendix 2. MAPPS Input Program Flow Chart (Continued).

66

getmem

iptr=0

get_nc_boeing

B (mapps_input)
boeing

nf_open

rcode≠0

nf_inq_dimid
nf_inq_dim

'coords','coords2',
'channelsar1','numfreqs'

sleeper

ig<12 yes

ig=0

yes

channelsar1≠nmics

netcdf
input file

A (mapps_input)
boeing

no

no

yes

no

goto 980

yes

no

Appendix 2. MAPPS Input Program Flow Chart (Continued).

67

istat≠0

read_nc_swts

B (mapps_input)
boeing

rcode≠0no

C (mapps_input)
boeing

nf_inq_varid
nf_get_var1_real
nf_get_var1_int

read_nc_xyz_boeing

no

nf_inq_varid
nf_get_var_real
nf_get_att_real

nf_get_var1_real

rcode≠0
istat≠0

read_nc_boeing

nf_inq_varid
nf_get_vardimid
nf_get_var1_real

no

rcode≠0
istat≠0no

yes

yes

goto 980

yes

yes

Appendix 2. MAPPS Input Program Flow Chart (Continued).

68

nf_close

pvmfinitsend
pvmfpack
pvmfsend
(control 2)

pvmfrecv
pvmfunpack
(control 3)

istat≠0

C (mapps_input)
boeing

980

print error message 990

pvmfexit

stop
end

yes no

send_boeing

pvmfinitsend
pvmfpack
pvmfsend
(control 2)

Appendix 2. MAPPS Input Program Flow Chart (Concluded).

69

APPENDIX 3. MAPPS PARALLEL PROCESSING PROGRAM FLOW CHART.

mapps_proc

pvmfmytid

mytid≤0

input

istat≠0

A (mapps_proc)

no

yes

pvmfrecv (1)
pvmfunpack
pvmfrecv (2)
[leader from control,
 others from leader]

controlupk

info≤0

pvmfunpack

no

goto 980

write error

yes

yes

70

A (mapps_proc)

pvmfinitsend
pvmfpack
pvmfmcast (1)

pvmfrecv (3)
pvmfunpack

nproc>1

istat≠0

lead

pvmfinitsend
pvmfpack
pvmfmcast (3)

pvmfmcast (2)

B (mapps_proc)

controlpak

pvmfinitsend

yes

yes

no

truefalse

blk, frqblk, frq

no

info≤0 or
istat≠0

no

yes

goto 980

71

lead

istat≠0

input_lead

true

pvmfrecv (4)
pvmfunpack
[from control]

C (mapps_proc)

B (mapps_proc)

goto 980

yes

getmem(idata, fftdata,rcr, wkarr)

false

lead

distrib

istat≠0

getdata

false

'boeing'

no

pvmfrecv (7,8)
pvmfunpack
[from leader]

pvmfinitsend
pvmfpack
pvmfmcast (7, 8)

no

true

pvmfrecv (5,6)
pvmfunpack
[from input]

nproc>1no

Boeing yes

no

yes

yes

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

72

C (mapps_proc)

D (mapps_proc)

DoIt

calt

dofft

windowing
ezffti

fft

caldb

globsum

calf

pvmfrecv (9)
pvmfunpack

pvmfinitsend
pvmfpack
pvfmsend (9)

pvmfinitsend
pvmfpack
pvmfmcast (10)

pvmfrecv (10)
pvmfunpack

nproc>1

lead

no

nproc>1

false

yes

yes

no

true

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

73

D (mapps_proc)

xcor_new

istat≠0

goto 980

write error

E (mapps_proc)

sum blocks

globavg

pvmfrecv (11)
pvmfunpack

pvmfinitsend
pvmfpack
pvmfmcast (12)

nproc>1

lead

no

nproc>1

yes

yes

pvmfinitsend
pvmfpack
pvmfsend (11)

false

pvmfrecv (12)
pvmfunpack

no

istat≠0

yes

true

no yes

no

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

74

Boeing

istat≠0

get_rcr_boeing

pvmfrecv (13)
pvmfunpack
[from input]

pvmfinitsend
pvmfpack
pvmfmcast (14)

lead

nproc>1

pvmfrecv (14)
pvmfunpack

no

false true

yes

o2wt

E (mapps_proc)

no

spectrum

diagf

scansw=0

scanpscans

yesno

F (mapps_proc)

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

75

istat≠0

F (mapps_proc)

density density_cor

directivity directivity_cal

scanrcr

goto 980

write error

istat≠0 yes

lead

on

on

no

pvmfaddhost
pvmfspawn
pvmfinitsend
pvmfpack
pvmfsend
(output 1)

no

true

G (mapps_proc)

no

openout

scanout

false

info≤0 or
istat≠0

yes

yes

off

off

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

76

G (mapps_proc)

sendout

pvmfinitsend
pvmfpack
pvmfsend
(output 2)

scanout

pvmfinitsend
pvmfpack
pvmfsend
(output 3)

info≤0 or
istat≠0

no

pvmfinitsend
pvmfpack
pvmfsend (15)

nproc>1

lead

no

goto 980

write error

yes

yes

no

H (mapps_proc)

scanout

yes

pvmfrecv (15)
pvmfunpack

no

yesinfo<0 or
istat≠0

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Continued).

77

H (mapps_proc)

nproc>1

pvmfjointgroup
pvmfbarrier

yes

lead

interactive

true

pvmfinitsend
pvmfpack
pvmfsend
(control 18)

yes

false

lead

interactive

true

pvmfinitsend
pvmfpack
pvmfsend
(control 18)

pvmfexit

stop
end

no

no

yes

980

false

no

Appendix 3. MAPPS Parallel Processing Program Flow Chart (Concluded).

78

APPENDIX 4. MAPPS OUTPUT PROGRAM FLOW CHART.

mapps_out

pvmfmytid

mytid≤0

A (mapps_out)

info£0 yes

yes

goto 980

getmem

pvmfparent

imem≠0 yes

initialize arrays

iptr=0 yes

no

no

getnml

pvmfrecv (2)
pvmfunpack
[from leader]

no

pvmfrecv (1)
pvmfunpack
[from leader]

info≤0 or
istat≠0

yesno

no

goto 990

79

A (mapps_out)

pvfmhalt

getscan

pvmfrecv (2)
pvmfunpack
[from leader]

write error

istat≠0

write_out_nc

yes

eliminate string blanks

out_nc

ncduplicate

procsettup

processeddataout

interactive

pvmfinitsend
pvmfpack
pvmfsend
[control 19)]

pvfmexit stop
end

NetCDF
output file

yes

980

data_tmp
netcdf file

(MAPPS input)

yes

info≤0 or
istat≠0

no

no

990

no

Appendix 4. MAPPS Output Program Flow Chart (Concluded).

80

APPENDIX 5. RAW DATA FORMAT DESCRIPTION

The netCDF raw data file content is described in this appendix. An example of a raw time history file is
shown in appendix 2. Variables are indicated in bold type with their attributes in normal type. The type
and dimensions of the variables and their attributes are specified as [type] [size] following the
description.

dimensions:

coords = 3 number of coordinates for vectors [int]
coords2 = 9 number of coordinate transformation matrix (3x3) mapped into

vector format [int]
channelsar1 number of VXI channels [int]
numvxicards number of VXI A/D cards [int]
time number of time samples for each channel [int]

variables:

test test number [int]
run run number [int]
point point number for the servio system [int]
array_point point number specific to the array [int]
wt_data_quality flag for status of wind tunnel condition data contained in this file, 0 = good,

1 = approximate, 2 = absent [int]
facility facility key: 0=other, 1=acoustic lab, 2=12-ft, 3=40x80, 4=80x120,

5=OARF, 6=unitary, 7=7x10 [int]
mtunxdir tunnel Mach number x axis direction: +1=positive pointing

downstream, –1=positive pointing upstream [int]
maingr model main gear indicator, 1=ON, 0=OFF [int]
nosegr model nose gear indicator, 1=ON, 0=OFF [int]
baro tunnel barometric pressure in psi [float]
rh tunnel relative humidity in % [float]
qc tunnel corrected dynamic pressure in psf [float]
ptopsf tunnel total pressure in psf [float]
psopsf tunnel static pressure in psf [float]
ttr tunnel total temperature in °R [float]
tsr tunnel static temperature in °R [float]
vfps tunnel velocity in ft/s [float]
vkts tunnel velocity in knots [float]
cfps tunnel speed of sound in ft/s [float]
mtun tunnel Mach number [float]
inc1 model angle of incidence measured at X in deg. [float]
bflap model inboard flap setting in deg. [float]
eslat model slat setting in deg. [float]
modelscale model scale factor [float]

81

modelrefxyzwtc model coordinate system origin reference x,y,z location in inches in
wind tunnel coordinate system [float] [coords]

modelrefrotwtc model reference rotation matrix from model to wind tunnel
coordinate system stored as a vector (first 3 elements of vector are
top row of rotation matrix) [float] [coords2]

modelrefangnat model natural angles (pitch, roll, yaw) in model natural coordinate
system in deg. [float] [coords]

modeldeltaxyzwtc model coordinate system delta x, y, z from reference in wind tunnel
coordinate system in inches [float] [coords]

modelabsxyzwtc model coordinate system origin absolute x, y, z location in wind
tunnel coordinate in inches [float] [coords]

modelabsrotwtc model absolute rotation matrix from model to wind tunnel coordinate
system stored as a vector (first 3 elements of vector are top row of
rotation matrix) [float] [coords2]

miclocsar1 microphone coordinates for array #1 in inches in array coordinate
system [float] [channelsar1, coords]

long_name long name for the microphone array [char*]
comment user comment [char*]
units coordinate system units [char*]
arrayPatternID microphone array pattern ID [char*]
locID location ID of the channels in array pattern [int] [channelsar1]
arrayPatternVersion array pattern version comment [char*]
arrayrefxyzwtccom arrayrefxyzwtc descriptive comment [char*]
arrayrefxyzwtc array coordinate system reference x, y, z position in inches in wind

tunnel coordinate system [float] [coords]
arrayrefrotwtccom arrayrefrotwtc descriptive comment [char*]
arrayrefrotwtcformat arrayrefrotwtc format description [char*]
arrayrefrotwtc array coordinate system reference rotation matrix from array to wind

tunnel coordinate system stored as a vector (first 3 elements of vector
are top row of rotation matrix) [float] [coords2]

arrayrefangnatcom arrayrefangnat descriptive comment [char*]
arrayrefangnat array reference angles (xi, zeta, upsilon) in array natural coordinate

system in degrees. [float] [coords]
arraydeltaxyzwtccom arraydeltaxyzwtc descriptive comment [char*]
arraydeltaxyzwtc array coordinate system x, y, z delta from reference position in inches

in wind tunnel coordinates [float] [coords]
arrayabsxyzwtccom arrayabsxyzwtc descriptive comment [char*]
arrayabsxyzwtc array coordinate system absolute x, y, z position in wind tunnel

coordinate in inches [float][coords]
arrayabsrotwtccom arrayabsrotwtc descriptive comment [char*]
arrayabsrotwtcformat arrayabsrotwtc format description [char*]
arrayabsrotwtc array coordinate system absolute rotation matrix from array to wind

tunnel coordinate system stored as a vector (first 3 elements of vector
are top row of rotation matrix) [float][coords2]

forbodyID microphone fore-body ID [int] [channelsar1]
micmancom micman comment

82

micman microphone manufacturer indicator where 0=other, 1=GRASS,
2=B&K [int] [channelsar1]

micmodel microphone model string composed of model name for each channel
separated by a | character [char*]

micserial microphone serial number string composed of a serial number for
each channel separated by a | character [char*]

preampmancom preampman comment [char*]
preampman preamp manufacturer indicator where 0=other, 1=GRASS, 2=B&K

[int] [channelsar1]
preampmodel preamplifier model string composed of preamplifier model name for

each channel separated by a | character [char*]
preampserial preamplifier serial number string composed of a serial number for

each channel separated by a | character [char*]
powermodel power supply model string composed of powersupply model name

for each channel separated by a | character [char*]
powerchasslotchan power supply box, slot, channel location indicator number composed

of box number*10000 + slot number*100 + channel number [int]
[channelsar1]

extfiltmancom extfiltman comment [char*]
extfiltman external filter manufacturer indicator where 0 = Pacific Instruments

[int] [channelsar1]
extfilmodel external filter model string composed of filter model name for each

channel separated by a | character [char*]
extfiltserial external filter serial number string composed of a serial number for

each channel separated by a | character [char*]
micabsar1 microphone absolute positions (x, y, z) in inches in wind tunnel

coordinate system for array #1 [float] [channelsar1, coords]
long_name long name for micabsar1 [char*]
units units [char*]

dataar1 array #1 time history data [short] [time, channelsar1]
long_name long name for array 1 data[char*]
comment dataar1 comment [char*]
dblocksperch data blocks per channel [int]
samplesperdblock number of time samples per data block per channel [int]
skiptime skipped time between data blocks in seconds [float]
freqsamp effective sampling frequency in samples per second [float]
freqspan user specified upper frequency of interest in Hz [float]
intfilthigh internal vxi high-pass filter value in Hz [float]
intfiltlow internal vxi low-pass filter value in Hz [float]
trigmode triggering mode where A = auto, M = manual [char]
trigdelay trigger delay in seconds [float]
trigext external trigger on, 1=TRUE, 0=FALSE [int]
triglevelup external trigger upper level in volts [float]
triglevellow external trigger lower level in volts [float]
fftwindow vxi FFT widowing where N=no window (rectangular), H=Hanning

[char]

83

units dataar1 units [char*]
engunits engineering units [char*]
xducertypecom transducer type descriptive comment [char*]
xducertype transducer type indicator where 0=other, 1=array microphone,

2=pressure transducer, 3=reference microphone, 4=reference signal,
5=single microphone [int] [channelsar1]

xducerdesc transducer type description [char*]
accouple AC coupling active flag where T=TRUE, F=FALSE [char]
accouplef AC coupling frequency in Hz [float]
overload: channel overloaded flag from vxi cards where T=TRUE, F=FALSE

[char] [channelsar1]
underrange: channel under range flag from vxi cards where T=TRUE, F=FALSE

[char] [channelsar1]
scalefactor conversion factor for A/D from volts to EU [float] [channelsar1]
eupervolt sensor manufacturer calibration factor before preamp from volt to EU

[float] [channelsar1]
eupervoltf sensor manufacturer calibration frequency in Hz [float] [channelsar1]
eupervoltamp sensor manufacturer calibration amplifier gain [float] [channelsar1]
eucomment descriptive comment on engineering units used [char*]
chgoodcom chgood descriptive comment [char*]
chgood vxi channel good flag where 0=BAD, 1=GOOD [int] [channelsar1]
vxichasslotchan vxi channel location in chassis/slot/channel combination where =

chassis number*10000 + slot number * 100 + channel number [int]
[channelsar1]

preampgain preamplifier gain setting [float] [channelsar1]
powergain power amplifier gain setting [float] [channelsar1]
extfiltenabled external filter enabled flag for each channel where 1=TRUE,

0=FALSE [char*]
extfiltlow external filter low pass frequency in Hz [float] [channelsar1]
extfilthigh external filter high pass frequency in Hz [float] [channelsar1]
extfiltgain external filter gain setting [float] [channelsar1]
voltrange channel voltage range set by user in volts [float] [channelsar1]
voltspercount conversion factor for A/D from counts to volts [float] [channelar1]

Global Attributes:

title test title [char*]
datetime data acquisition date and time [char*]
fileversion NetCDF file version [char*]
numarrays number of array system [int]
data_quality_comment comment for specific run and point [char*]
flow_model_comment comment on tunnel flow conditions [char*]
rawth_file raw data source file [char*]

84

APPENDIX 6. PROCESSED DATA FORMAT DESCRIPTION

The variables and attributes for the processed netCDF data file are described in this appendix. In
actuality the processed data file contains all variables and attributes of the raw data file with no dataar1
data. Thus this appendix will describe only the additional variables and attributes added by the
processing.

dimensions:

indfdim number of frequencies contained in the individual channel spectrum
variable, set to 1/2 the FFT block size [int]

coord5=5 number of columns in nbspect variable [int]
procmicsdim number of microphones processed [ind]
fnbpdbdim number of frequencies processed [int]
xsgdim number of grid points in the x direction of the scan surface [int]
ysgdim number of grid points in the y direction of the scan surface [int]
zsgdim number of grid points in the z direction of the scan surface [int]
timeblksdim number of FFT blocks requested to average [int]
indcolsdim number of columns in the ind variable, procmicsdim+1 [int]

variables:

version processed data version number [int]
procsettup variable whose attributes are the complete processing setup

information [int]
long_name long name for procsettup [char*]
mapps_con_number mapps_con processing code version number [char*]
mapps_input_number mapps_input processing code version number [char*]
mapps_proc_number mapps_proc processing code version number [char*]
mapps_out_number mapps_out processing code version number [char*]
fft_block_size FFT block size [int]
freq_res hertz per FFT line [float]
freq_up_lim upper frequency used in delta dB microphone health check and added

gains calculation [float]
freq_low_lim lower frequency used in delta dB microphone health check and added

gains calculation [float]
delta_db delta dB value used in delta dB microphone health check and added

gains calculation [float]
req_fft_blkspergroup number of FFT blocks per group requested to be processed [int]
req_fft_group number of FFT groups to be processed [int]
num_freqs number of frequencies to be scanned [int]
antenna_gains gain to be applied to all channels if use_antenna_gains set to

“use_value” [float]
installation_gains gain in dB to be applied to correct for installation effects, set to zero

to disable [float]

85

windowing_factor set to 1.0 [float]
bad_mics list of user defined bad channels [int] [user defined]
freq_index_nums list of frequencies by index to be processed [int] [fnbpdbdim]
time_stamp date of processing [char*]
proc_type processing type selection (‘regular’, minimum_variance’ or ‘music’)

[char*]
noise_reduction noise reduction selection (‘none’, ‘zero_sub’, ‘avg_sub’ or ‘sub_3’)

[char*]
side_reduction switch to apply side lob reduction (‘yes’ or ‘no’) [char*]
conv_corr switch to apply flow convection correction (‘yes’ or ‘no’) [char*]
add_gains switch to calculate and apply added gains (‘yes’ or ‘no’) [char*]
windowing_name time history window to apply before calculating FFT (‘rectangular’,

‘tapered’, ‘triangular’, ‘hanning’, ‘hamming’, ‘blackman’, ‘riesz’,
‘riemann’, ‘cauchy’, ‘poisson’ or ‘gaussian’) [char*]

use_antenna_gains switch to use gains stored in raw data file or value specified in
antenna_gains attribute (‘use_gains_from_file’ or ‘use_value’)
[char*]

input_freq string of requested scan frequencies input line[char*]
output_freq string of actual scan frequencies line [char*]
data_source source of raw time history data (‘NetCDF_file’ or ‘Boeing file’)

[char*]
interactive switch for interactive processing (always set to ‘yes’) [char*]
proc_geom switch to choose processing geometry (‘spherical’ or ‘plane_wave’)

[char*]
surface switch to determine method of scan surface input for spherical

processing (‘define_plane’ or ‘scan_surface_file’) [char*]
surface_file input scan surface file if surface defined as ‘scan_surface_file’

[char*]
phi_format phi format definition (min, max, delta) for plane wave processing

[char*]
phi phi geometry definition for plane wave processing [float] [coords]
psi_format psi format definition (min, max, delta) for plane wave processing

[char*]
psi psi geometry definition for plane wave processing [float] [coords]
upper_left_format upper left scan surface point format (x, y, z) in inches in model

coordinate system [char*]
upper_left upper left scan surface point coordinates in inches in model

coordinate system [float] [coord]
lower_left_format lower left scan surface point format (x, y, z) in inches in model

coordinate system [char*]
lower_left lower left scan surface point coordinates in inches in model

coordinate system [float] [coord]
upper_right_format upper right scan surface point format (x, y, z) in inches in model

coordinate system [char*]
upper_right upper right scan surface point coordinates in inches in model

coordinate system [float] [coord]

86

num_across number of equally spaced grid points from the upper left to the upper
right direction for the ‘define_plane’ option [int]

num_down number of equally spaced grid points from the upper left to the lower
left direction for the ‘define_plane’ option [int]

atmos_atten switch to activate the atmospheric attenuation correction (‘on’ or
‘off’) [char*]

directivity switch to activate the array directivity correction (‘on’ or ‘off’)
[char*]

directivity_file file containing the directivity correction data for directivity set to ‘on’
[char*]

density switch to activate the density correction (‘on’ or ‘off’) [char*]
freefield_cal switch to activate microphone free-field effect correction (‘on’ or

‘off’) [char*]
cal_type calibration type indicator (‘basic’, ‘ames’ or ‘boeing’) [char*]
acc_fit_type type of curve fit used in speaker calibration [char*]
speaker_name name of speaker used for calibration [char*]
speaker_cal_file file containing speaker calibration curve fit [char*]
ncfile netCDF file containing instrument calibrations [char*]
diaphragm_ser switch to activate the diaphragm serial number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
diaphragm_rep switch to activate the diaphragm model number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
diaphragm_cal flag to determine what part of the diaphragm electrostatic calibration

to apply (‘amplitude’, ‘phase’ or ‘both’) [char*]
preamp_ser switch to activate the preamp serial number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
preamp_rep switch to activate the preamp model number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
preamp_cal flag to determine what part of the preamp electrostatic calibration to

apply (‘amplitude’, ‘phase’ or ‘both’) [char*]
power_ser switch to activate the power supply serial number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
power_rep switch to activate the power supply model number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
power_cal flag to determine what part of the power supply electrostatic

calibration to apply (‘amplitude’, ‘phase’ or ‘both’) [char*]
filter_ser switch to activate the filter serial number based electrostatic frequency

correction (‘on’ or ‘off’) [char*]
filter_rep switch to activate the filter model number based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
filter_cal flag to determine what part of the filter electrostatic calibration to

apply (‘amplitude’, ‘phase’ or ‘both’) [char*]
wire_chan switch to activate the institutional wiring channel based electrostatic

frequency correction (‘on’ or ‘off’) [char*]
wire_rep switch to activate the institutional wiring representative based

electrostatic frequency correction (‘on’ or ‘off’) [char*]

87

wire_cal flag to determine what part of the institutional wiring electrostatic
calibration to apply (‘amplitude’, ‘phase’ or ‘both’) [char*]

delta_pres_val switch to activate the delta pressure from atmospheric base on the
diaphragm serial number frequency correction (‘on’ or ‘off’)
[char*]

delta_pres_rep switch to activate the delta pressure from atmospheric base on the
diaphragm model number frequency correction (‘on’ or ‘off’)
[char*]

delta_pres_cal flag to determine what part of the delta pressure calibration to apply
(‘amplitude’, ‘phase’ or ‘both’) [char*]

sensitivity_file file containing the individual channel pascals per volt sensitivity
[char*]

sensitivity_source source of the sensitivity calibration values [char*]
instr_cal_file input netCDF file containing the instrumentation calibration neural

net curve fits [char*]
installation_gain_type flag to indicate if installation gains are from file or a constant [char*]
installation_gain_file input netCDF file containing the installation calibration neural net

curve fits [char*]
ctrl_proc processor name on which to run the control process [char*]
ctrl_exec executable path for the control process [char*]
raw_proc processor name on which to run the read raw data process [char*]
raw_exec executable path for the read raw data process [char*]
out_proc processor name on which to run the output process [char*]
out_exec executable path for the output process [char*]
out_path processed data output file name including path [char*]
comp_proc processor names on which the scanning processes will be run [char*]
comp_exec executable paths for the scanning processes [char*]

num_cpu number of CPUs to use on each comp_proc [int] [number of
machines]

lead_cpu number of the lead processor [int]
user_conditions_comment comment about the wind tunnel conditions [char*]
wt_conditions_source source for the wind tunnel conditions to be used in processing

(‘netCDF_raw_file’ or ‘user_input’) [char*]
mach_number wind tunnel Mach number [float]
static_temp_rankine user supplied tunnel static temperature in °R [float]
static_pres_psf user supplied tunnel static pressure in psf [float]
rel_humidity user supplied relative humidity in percent [float]
num_channels number of channels in input data [int]
num_good_mics number of good microphones in processed data [int]
num_blocks number of requested FFT blocks to process [int]
num_good_blocks number of good FFT blocks in processed data [int]
mic_status indicator of microphone health status [int][channelsar1]
slope sensitivity value used in processing [float] [channelsar1]

88

hosts_par_f file name containing a list of processors to be used in the NAS
system [char*]

data_tmp_f temporary debugging file written by the input program [char*]
raw_time_f raw time history file name [char*]
file_log_f log file [char*]

nbspect narrow band spectral results containing the average spectrum from
all the microphones before scanning, the mean and the maximum
value for all the scan points for each frequency processing in
scanning with the column order being fin, f(Hz), asp(dB), mea(dB),
max(dB) [float] [fnbpdbdim, coord5]

long_name long name for nbspect variable [char*]
format variable format [char*]
units nbspect units [char*]

mhlth array of characters indicating the individual microphone and block
health with the time blocks along columns and channels along rows
[char] [channelsar1, timeblksdim]

long_name mhlth variable long name [char*]
format the variable format [char*]
options character options are 0=good mic, 1=band edged, 2=flat spot, 3=delta

db, 4=declared bad, 5=not used [char*]
micblkhlth array of characters indicating the actual data processed including

rows and columns of data discarded due to microphone health check
failures [char] [channelsar1, timeblksdim]

long_name micblkhlth variable long name [char*]
format the variable format [char*]
options character options are 0=good mic, 1=band edged, 2=flat spot, 3=delta

db, 4=declared bad, 5=not used, 6=bad mic flag, 7=bad blocks,
9=other [char*]

micflg_options microphone options are 0 = bad mic and 1 = good mic
micflg integer indicator if microphone was used in processing

[int][channelsar1]
blkflg_options FFT block options are 0 = bad block and 1 = good block
blkflg inteeger indicator if FFT block was used in processing

[int][timeblksdim]

ind individual microphone spectra which have been averaged over FFT
blocks. First column is the frequency with the individual channel
spectra following. [float] [indfdim, indcolsdim]

long_name ind long name [char*]
format the variable format [char*]
units ind units [char*]

sgoutx [float] [xsgdim, ysgdim, zsgdim]
long_name sgoutx variable long name [char*]
units sgoutx units [char*]
format the variable format [char*]
xdim number of the x values [int]

89

ydim number of y values [int]
zdim number of z values [int]

sgouty [float] [xsgdim, ysgdim, zsgdim]
long_name sgouty variable long name [char*]
units sgouty units [char*]
format the variable format [char*]
xdim number of the x values [int]
ydim number of y values [int]
zdim number of z values [int]

sgoutz [float] [xsgdim, ysgdim, zsgdim]
long_name sgoutz variable long name [char*]
units sgoutz units [char*]
format the variable format [char*]
xdim number of the x values [int]
ydim number of y values [int]
zdim number of z values [int]

nbpdb [float] [xsgdim, ysgdim, zsgdim, fnbpdbdim]
long_name nbpdb variable long name [char*]
units nbpdb units [char*]
format the variable format [char*]
xdim number of the x values [int]
ydim number of y values [int]
zdim number of z values [int]
fdim number of frequency values [int]

Global Attributes:
process_out_format_version version number of the processed data format [char*]

90

APPENDIX 7. CONTROL SETTINGS FILE EXAMPLE

$MAIN_NUM
 version_number = 10,
 fft_block_size = 512,
 freq_res = 150.000000,
 req_fft_blkspergroup = 80,
 req_fft_group = 5,
 num_freqs = 166,
 antenna_gains = 20.000000,
 installation_gains = 6.0,
 windowing_factor = 1.0,
 bad_mics = ,
 freq_index_nums = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,

 freq_up_lim = 10000.000000,
 freq_low_lim = 1000.000000,
 delta_db = 6.000000,
 $
 $MAIN_STR
 time_stamp = ‘Thu Apr 9 11:13:41 1998’,
 proc_type = ‘regular’,
 noise_reduction = ‘sub_3’,
 side_reduction = ‘yes’,
 conv_corr = ‘yes’,
 add_gains = ‘no’,
 windowing_name = ‘hanning’,
 use_antenna_gains = ‘use_gains_from_file’,
 input_freq = ‘300(1)25000’,
 output_freq = ‘300.00(1)25050.00’,
 data_source = ‘NetCDF_file’,
 interactive = ‘yes’,
 $
 $GEOM_STR
 proc_geom = ‘spherical’,
 surface = ‘define_plane’,
 surface_file = ‘/data1/bardina/results/geom/scanV01.bin’,
 $

91

 $GEOM_NUM
 phi_min = -90.000000,
 phi_max = 90.000000,
 phi_delta = 1.000000,
 psi_min = -90.000000,
 psi_max = 90.000000,
 psi_delta = 1.000000,
 upper_left_x = 30.000000,
 upper_left_y = 60.000000,
 upper_left_z = -5.000000,
 lower_left_x = 30.000000,
 lower_left_y = 0.000000,
 lower_left_z = -5.000000,
 upper_right_x = -30.000000,
 upper_right_y = 60.000000,
 upper_right_z = -5.000000,
 num_across = 121,
 num_down = 121,
 $
 $CAL_STR
 atmos_atten = ‘off’,
 directivity = ‘off’,
 directivity_file = ‘/pmat1d2/data/fe3/test/directivity.nc’,
 density = ‘off’,
 freefield_cal = ‘off’,
 cal_type = ‘basic’,

 diaphragm_ser = ‘off’,
 diaphragm_rep = ‘off’,
 diaphragm_cal = ‘both’,
 preamp_ser = ‘off’,
 preamp_rep = ‘off’,
 preamp_cal = ‘both’,
 power_ser = ‘off’,
 power_rep = ‘off’,
 power_cal = ‘both’,
 filter_ser = ‘off’,
 filter_rep = ‘off’,
 filter_cal = ‘both’,
 wire_chan = ‘off’,
 wire_rep = ‘off’,
 wire_cal = ‘both’,
 delta_pres_val = ‘off’,
 delta_pres_rep = ‘off’,
 delta_pres_cal = ‘both’,
 sensitivity_file = ‘/pmat1d2/data/fe3/test/piston.cal’,

92

sensitivity_source = ‘pistonphone’,
 instr_cal_file = ‘/pmat1d2/data/fe3/calibration980421.nc/’,
 installation_gain_type = ‘contant’,
 installation_gain_file = ‘/pmat1d2/data/fe3/calibration980421.nc/’,
 $
 $SETUP_STR
 ctrl_proc = ‘pmat1’,
 ctrl_exec = ‘/usr/local/pvm3/bin/SGI64/mapps_con’,
 raw_proc = ‘pmat1’,
 raw_exec = ‘/usr/local/pvm3/bin/SGI64/mapps_input’,
 out_proc = ‘pmat1’,
 out_exec = ‘/usr/local/pvm3/bin/SGI64/mapps_out’,
 out_path = ‘/pmat1d2/data/fe3/test/105000PMA00014010procd10.nc’,
 comp_proc(1) = ‘leonardo’,
 comp_proc(2) = ‘proc2’,
 comp_proc(3) = ‘proc3’,
 comp_proc(4) = ‘proc4’,
 comp_proc(5) = ‘proc5’,
 comp_proc(6) = ‘proc6’,
 comp_proc(7) = ‘proc7’,
 comp_proc(8) = ‘proc8’,
 comp_proc(9) = ‘proc9’,
 comp_proc(10) = ‘proc10’,
 comp_proc(11) = ‘proc11’,
 comp_proc(12) = ‘proc12’,
 comp_proc(13) = ‘proc13’,
 comp_proc(14) = ‘proc14’,
 comp_proc(15) = ‘proc15’,
 comp_proc(16) = ‘proc16’,
 comp_exec(1) = ‘/usr/local/pvm3/bin/SGI64/mapps_proc’,
 comp_exec(2) = ‘exec2’,
 comp_exec(3) = ‘exec3’,
 comp_exec(4) = ‘exec4’,
 comp_exec(5) = ‘exec5’,
 comp_exec(6) = ‘exec6’,
 comp_exec(7) = ‘exec7’,
 comp_exec(8) = ‘exec8’,
 comp_exec(9) = ‘exec9’,
 comp_exec(10) = ‘exec10’,
 comp_exec(11) = ‘exec11’,
 comp_exec(12) = ‘exec12’,
 comp_exec(13) = ‘exec13’,
 comp_exec(14) = ‘exec14’,
 comp_exec(15) = ‘exec15’,
 comp_exec(16) = ‘exec16’,
 $

93

 $SETUP_NUM
 iprocess = 1,
 idebug = 0,
 num_cpu(1) = 8,
 num_cpu(2) = 0,
 num_cpu(3) = 0,
 num_cpu(4) = 0,
 num_cpu(5) = 0,
 num_cpu(6) = 0,
 num_cpu(7) = 0,
 num_cpu(8) = 0,
 num_cpu(9) = 0,
 num_cpu(10) = 0,
 num_cpu(11) = 0,
 num_cpu(12) = 0,
 num_cpu(13) = 0,
 num_cpu(14) = 0,
 num_cpu(15) = 0,
 num_cpu(16) = 0,
 lead_cpu = 1,
 $
 $CONDITIONS_STR
 user_conditions_comment = ‘none’,
 wt_conditions_source = ‘netCDF_raw_file’,
 $
 $CONDITIONS_NUM
 mach_number = 0.219000,
 static_temp_rankine = 526.148010,
 static_pres_psf = 2059.996094,
 rel_humidity = 46.400002,
 $
 $ARRAY_NUM
 num_channels = 100,
 num_good_mics = 100,
 mic_status = 0,

0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0,

 $
 $OLD_STUFF
 hosts_par_f = ‘/tmp/105000PMA00014010direc10.par’,
 data_tmp_f = ‘/tmp/105000PMA00014010headr10.nc’,
 raw_time_f = ‘/pmat1d2/data/fe3/test/105000PMA00014010rawth99.nc’,
 file_log_f = ‘/tmp/105000PMA00014010direc10.log’,
 $

94

APPENDIX 8. INSTRUMENTATION CALIBRATION FILE DESCRIPTION

The Instumentation Calibration File is a netCDF data file. No dimensions are used. All of the data are
stored in attributes. Variables are indicated in bold type with their attributes in normal type.

variables:

general empty [float]
desc information [char*]

microphone empty [float]
desc1 information [char*]
. .
. .
desc66 information [char*]

preamp empty [float]
desc1 information [char*]
. .
. .
desc9 information [char*]

powersuply empty [float]
desc1 information [char*]
. .
. .
desc9 information [char*]

filter empty [float]
desc1 information [char*]
. .
. .
desc9 information [char*]

wire empty [float]
desc1 information [char*]
. .
. .
desc9 information [char*]

micsn7193 empty (microphone serial number equals 7193 in this example)
[char]

caldatafile name of the instrumentation calibration file [char*]
instrument type of instrument [char]
sn serial number of instrument [char]
brand brand of instrument [char
model model of instrument [char]
size size of instrument [char]
calvolts calibration voltage level [float]
caldb calibration dB level [float]

95

calfreq calibration frequency [float]
powsupsn power supply serial number [char*]
powsupbrand power supply brand [char*]
powsupmodel power supply model [char*]
psstatus power supply status [char*]

1 for power supply in model,
0 for no power supply,
–1 for effect of power supply removed by model of power supply,
–2 for effect of power supply removed by model of power supply
instrument type

preampsn preamp serial number [char*]
preampbrand preamp brand [char*]
preampmodel preamp model [char*]
preampstatus preamp status [char*]

1 for preamp in model,
0 for no preamp,
–1 for effect of preamp removed by model of preamp,
–2 for effect of preamp removed by model of preamp instrument type

diaphragmsn diaphragm serial number [char*]
diaphragmbrand diaphragm brand [char*]
diaphragmmodel diaphragm model [char*]
diaphstatus diaphragm status [char*]

1 for diaphragm in model,
0 for no diaphragm,
–1 for effect of diaphragm removed by model of diaphragm,
–2 for effect of diaphragm removed by model of diaphragm
instrument type

filtersn filter serial number [char*]
filterbrand filter brand [char*]
filtermodel filter model [char*]
filtstatus filter status [char*]

1 for filter in model,
0 for no filter,
–1 for effect of filter removed by model of filter,
–2 for effect of filter removed by model of filter instrument type

wiresn wire serial number [char*]
wirestatus wire status [char*]

1 for wire in model,
0 for no wire,
–1 for effect of wire removed by model of wire,
–2 for effect of wire removed by model of wire instrument type

domodel vector describing which models were made [float]
domodel(1) = 1 for amplitude model
domodel(2) = 1 for phase model
domodel(3) = 1 for delta amplitude model
domodel(4) = 1 for delta phase model

96

ampcaldate date instrument was calibrated [char*]
ampdate date amplitude model was made [char*]
ampquality quality of amplitude model [float]
ampreal indicates if real data was used [float]
ampstats statistics of data used to generate the neural net model; ampstats (1) is

the minimum wave number (1/m) for diaphram or minimum
frequency (Hz) for other instruments, ampstats (2) is the maximum
wave number (1/m) for diaphram or maximun frequency (Hz) for
other instruments, ampstats (3) is the average wave number (1/m) for
diaphram or average frequency (Hz) for other instruments, ampstats
(4) is the standard deviation of wave number (1/m) for diaphram or
standard deviation of frequency (Hz) for other instruments, ampstats
(5) is minimum pressure (psf), ampstats (6) is maximum pressure
(psf), ampstats (7) is mean pressure (psf), ampstats (8) is standard
deviation of pressure (psf)[float]

ampnumneurons number of neurons [float]
ampinvars number of input variables to model [float]
ampfun1 1st function for model [char*]
ampw1 matrix of w1 weights [float]
ampb1 vector of b1 biases [float]
ampfun2 2nd function for model [char*]
ampw2 matrix of w2 weights (vector in this case) [float]
ampb2 vector of b2 bias (length 1 in this case) [float]
ampcorr correlation coefficient [float]
amprms normalized rms error [float]
amppeak peak error in dB [float]
phasecaldate date instrument was calibrated [char*]
. repeat information for phae
.
phasepeak peak error in dB [float]
delampcaldate date instrument was calibrated [char*]
. repeat information for delta amplitude
.
delamppeak peak error in dB [float]
delphasecaldate date instrument was calibrated [char*]
. repeat informatin for delta phase
.
delphasepeak peak error in dB [float]

powsupsn7500.A empty (power supply serial number equals 7500.A in this example)
[char]

caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
delphasepeak peak error in dB [float]

preampsn7311 empty (preamplifier serial number equals 7311 in this example)
[char]

97

caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

filtersn123 empty (filter serial number equals 123 in this example) [char]
caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

wiresn456 empty (wire serial number equals 456 in this example) [char]
caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

micsnrepTMS140BF empty (microphone model equals TMS140BF in this example)
[char]

caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

preampsnrepTMS112AA empty (preamplifier model equals TNS112AA in this example)
[char]

caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

preampsnrepTMS126AC empty (preamplifier model equals TMS126AC in this example)
[char]

caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

filtersnrepABC empty (filter model equals ABC in this example) [char]
caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

wiresnrepDEF empty (wire model equals DEF in this example) [char]
caldatafile name of the instrumentation calibration file [char*]
. repeat information for power supply
.
phasepeak peak error in dB [float]

98

APPENDIX 9. SPEAKER CALIBRATION FILE DESCRIPTION

The Speaker Calibration File is a netCDF data file. No dimensions are used. All of the data are stored
in attributes. Variables are indicated in bold type with their attributes in normal type.

variables:

general empty [float]
desc information [char*]

speakerdefinition empty [float]
desc1 information [char*]
. .
. .
desc55 information [char*]

speakerSJ1 empty (speaker name equals SJ1 in this example) [char]
speakname name of the speaker [char*]
lowerwaveno lower wave number limit (1/m) [float]
upperwaveno upper wave number limit (1/m) [float]
minfreq lower frequency limit (Hz) [float]
maxfreq upper frequency limit (Hz) [float]
speakdate history of dates of model generation [char*]
refnumneurons number of neurons for reference location [float]
reffun1 1st function for model for reference location [char*]
refw1 matrix of w1 weights (vector in this case) for reference location

[float]
reflb1 vector of b1 biases for reference location [float]
reffun2 2nd function for model for reference location [char*]
refw2 matrix of w2 weights (vector in this case) for reference location

[float]
refb2 vector of b2 bias (length 1 in this case) for reference location [float]
refcor correlation coefficient for reference location [float]
refrms normalized rms error for reference location [float]
refpeak peak error in dB for reference location [float]
speakquality quality of the speaker model, = 1 for good, = 0 for bad [float]
speakstats statistics of data used to generate the neural net model; speakstats(1)

is the minimum wave number (1/m), speakstats(2) is the maximum
wave number (1/m), speakstats(3) is the average wave number (1/m),
speakstats(4) is the standard deviation of wave number (1/m),
speakstats(5) is minimum theta (deg), speakstats(6) is maximum
theta (deg), speakstats(7) is mean theta (deg), speakstats(8) is
standard deviation of theta (deg), speakstats(9) is minimum phi (deg),
speakstats(10) is maximum phi (deg), speakstats(11) is mean phi
(deg), speakstats(12) is standard deviation of phi (deg) [float]

speaknumneurons number of neurons [float]

99

speakinvars number of variables in speaker model [float]
speakfun1 1st function for model [char*]
speakw1 matrix of w1 weights [float]
speakb1 vector of b1 biases [float]
speakfun2 2nd function for model [char*]
speakw2 matrix of w2 weights (vector in this case) [float]
speakb2 vector of b2 bias (length 1 in this case) [float]
speakcor correlation coefficient [float]
speakrms normalized rms error [float]
speakpeak peak error in dB [float]

100

APPENDIX 10. INSTALLATION CALIBRATION FILE DESCRIPTION

The Installation Calibration File is a netCDF data file. No dimensions are used. All of the data are
stored in attributes except for the one variable “numinstallocations”. Variables are indicated in bold
type with their attributes in normal type.

variables:

general empty [float]
desc information [char*]

installation empty [float]
desc1 information [char*]
. .
. .
desc31 information [char*]

numinstallocations number of microphone locations [float]
instalmic1 empty [char]

instalarrayname name of the array [char*]
instalindex index number of the location on the array pattern(=1 in this example)

[char*]
instalx x location in inches in array coordinates [float]
instaly y location in inches in array coordinates [float]
instalz z location in inches in array coordinates [float] [float]
instalquality quality of the installation model, = 1 for good, = 0 for bad [float]
instalmicdate history of dates of model generation [char*]
instalstats statistics of data used to generate the neural net model; instalstats(1)

is the minimum wave number, instalstats(2) is the maximum wave
number, instalstats(3) is the average wave number, instalstats(4) is the
standard deviation of wave number [float]

instalnumneurons number of neurons [float]
instalfun1 1st function for model [char*]
instalw1 matrix of w1 weights (vector in this case) [float]
instalb1 vector of b1 biases [float]
instalfun2 2nd function for model [char*]
instalw2 matrix of w2 weights (vector in this case) [float]
instalb2 vector of b2 bias (length 1 in this case) [float]
instalcor correlation coefficient [float]
instalrms normalized rms error [float]
instalpeak peak error in dB [float]

instalmic2 repeat information for each microphone location

101

APPENDIX 11. DIRECTIVITY CALIBRATION FILE DESCRIPTION

The Directivity Calibration File is a netCDF data file. No dimensions are used. All of the data are
stored in attributes . Variables are indicated in bold type with their attributes in normal type.

variables:

general empty [float]
desc information [char*]

directivity empty [float]
desc1 information [char*]
. .
. .
desc30 information [char*]

dir710-01-100 empty (array name equals 710-01-100 in this example) [char]
dirarrayname name of the array [char*]
dirdate history of dates of model generation [char*]
dirquality quality of the directivity model, = 1 for good, = 0 for bad [float]
dirstat statistics of data used to generate the neural net model; dirstat(1) is

the minimum wave number(1/m), dirstat(2) is the maximum wave
number (1/m), dirstat(3) is the average wave number(1/m), dirstat(4)
is the standard deviation of wave number (1/m), dirstat(5) is
minimum theta (deg), dirstat(6) is maximum theta (deg), dirstat(7) is
mean theta (deg), dirstat(8) is standard deviation of theta (deg),
dirstat(9) is minimum phi (deg), dirstat(10) is maximum phi (deg),
dirstat(11) is mean phi (deg), dirstat(12) is standard deviation of phi
(deg) [float]

dirnumneurons number of neurons [float]
dirinvars number of model variables [float]
dirfun1 1st function for model [char*]
dirw1 matrix of w1 weights [float]
dirb1 vector of b1 biases [float]
dirfun2 2nd function for model [char*]
dirw2 matrix of w2 weights (vector in this case) [float]
dirb2 vector of b2 bias (length 1 in this case) [float]
dircor correlation coefficient [float]
dirrms normalized rms error [float]
dirpeak peak error in dB [float]

Processing
Control

Interface

Processing
Settings

File

Control
Process

Raw
Time History

Data File

Read
Data

Process
Parallel

Processes

Output
Process

Processed
Data File

Data Flow
Process Spawning Flow

Calibration
Files

Visualization
Process

Model
Projection

File

Data Processing

Raw Data
File Header

Figure 1. MAPPS overview.

102

Xm

Zm

Ym

Za

Xa

Ya

Xwt

Ywt

Zwt

Figure 2. Coordinate systems used in MAPPS.

103

xa

ya

za

zwt

xwtywt

(xac,yac,zac)

Flow

xa,r

ya,r

za,r

(xacd,yacd,zacd)
(xacr,yacr,zacr)

a) Side view of array coordinates

zwt

xwt
ywt

(xac,yac,zac)

Flow

(xacr,yacr,zacr)

b) End view of array coordinates

ya,r

za,r

ya

za

xa,r xa

Figure 3. View of array coordinates.
104

zwt
xwt

ywt

Flow

c) Top View of Array Coordinates

xa,r

ya,r

za,r

(xacr,yacr,zacr)
xa

ya

za

(xacd,yacd,zacd)

(xac,yac,zac)

Figure 3. View of array coordinates (concluded)

105

zm,r xm,r

ym,r

zwt

ywt

Flow

a) Side view of model coordinates

zm

xwt

ym

xm

Figure 4. View of model coordinates.

106

zm,r

xm,r

ym,r

zwt

ywt

Flow

b) End View of Model Coordinates

zm

xwt

ym

xm

Figure 4. View of model coordinates (continued).

107

xm,r

ym,r

zm,r
ywt

Flow

c) Top view of model coordinates

zm

xwt

α

Figure 4. View of model coordinates (concluded).

xm

108

yc

zcxc
X

mic

yc0

xc0

zc0

rsd
−αsd

yc
zc

xc

xc

yc

zc

βsd

mic
rsd

Figure 5. Speaker def in i t ion ca l ibra t ion coord inate system.

a) S ide v iew

b) Top v iew

109

ywt

zwt
xwt

X

ya

za
xa

rad −αad

zc

yc

xc

xa

ya

za

βad

ywt
zwt

xwt

rad
yc

xc

zc

Figure 6 . Ar ray d i rec t iv i ty ca l ib ra t ion coord inate systems.

a) S ide v iew

b) Top v iew

110

Raw T ime St ream

Decimated T ime St ream

Figure 7. Block decimat ion scheme.

111

None
Zero Sub
Avg Sub
Avg Sub2

Yes
No

Rectangular
Hamming
Hanning
Blackman

File
Load Settings
Load Raw Data
Save Settings
Quit

Header
Channel Info

Array
Processing Geometry
Processor Settup
Calibration
Flow Conditions
Preferences

Figure 8. Control interface main window.

112

Figure 9. Control interface header information window.

113

Figure 10. Control interface instrumentation information window.

114

Figure 11. Control interface customize array window.

115

ya

xa

φa = 90

φa = -90

ψa = 90
ψa = -90

a) Control interface plane wave scan definition window.

b) Plane wave angle definition.

Figure 12. Plane wave geometry definition.

116

Figure 13. Control interface scan surface file input window.

Figure 14. Control interface scan surface corner input window.

117

Figure 15. Control interface processor setup window.

118

Figure 16. Control interface calibration window.

119

Figure 17. Control interface flow conditions window.

Figure 18. Control interface preferences window.

120

Figure 19. Mview main window.

Figure 20. Mview overview window.

121

Load Model
Print
Quit

Image
Contours
Legend
Frequency

Flip Image Vertical
Flip Image Horizontal

Model Color
Model Symbol

Profile
Source Integration Load Points

Define Points
Load Multi Source Pts

Abs Min-Max
Rel Min-Max
Abs dB Range
Rel dB Range
Manual

Figure 21. Mview imager window.

122

Figure 22. Mview imager window with profiles activated.

Figure 23. Mview profiles window.

123

Figure 24. Mview imager window in source integration define points mode.

Figure 25. Mview imager window in source integration multisource mode.

125

Figure 26. Mview individual microphone health window.

126

Figure 27. Mview combined microphone health window.

127

Figure 28. Mview surface plot window.

128

Figure 29. Mview source integration results window.

129

Executable Code

Matlab Script

NetCDF Binary File

ASCII File

File To Be Used By
Processing Software* *

Figure 30. Calibration file generation flow chart.

Legend

a) Individual instrumentation correction.

130

*

b) Installation correction.

Figure 30. Calibration file generation flow chart (continued).

131

*

c) Directivity Correction.

Figure 30. Calibration file generation flow chart (continued).

132

*

d) Sensitivity Correction.

Figure 30. Calibration file generation flow chart (concluded).

133

Microphone Array

Scanning Surface

Test Model

Model Definition Point

Scan Surface
Projection Point

Figure 31. Scan surface projected points scheme.

134

REPORT DOCUMENTATION PAGE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE12a. DISTRIBUTION/AVAILABILITY STATEMENT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

1. AGENCY USE ONLY (Leave blank)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

17. SECURITY CLASSIFICATION
 OF REPORT

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11. SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category 02 Distribution: Standard
Availability: NASA CASI (301) 621-0390

A-9900429

NASA/TM–1999-208755

March 1999

Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001

519-20-21

131

A07

Microphone Array Phased Processing System (MAPPS)
Version 4.0 Manual

Michael E. Watts, Marianne Mosher, Michael Barnes,*
and Jorge Bardina*

A processing system has been developed to meet increasing demands for detailed noise measurement of
individual model components. The Microphone Array Phased Processing System (MAPPS) uses graphical
user interfaces to control all aspects of data processing and visualization. The system uses networked
parallel computers to provide noise maps at selected frequencies in a near real-time testing environment.
The system has been successfully used in the NASA Ames 7- by 10-Foot Wind Tunnel.

Microphone array, Acoustics, Parallel processing

Technical Memorandum

Point of Contact: Michael E. Watts, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000
 (650) 604-6574

*Caelum Research Corporation, Ames Research Center

